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Chapter 1

Differentiation

Broadly speaking, differential calculus is the study of instantaneous change. Early on in a first

calculus course, students learn that the derivative of a function at a point measures the slope of

the line tangent at that point; the slope of the tangent line at a point is simply limit of the slopes

of the secant lines passing through the specified point, and these slopes measure the average rate

of change of the function. Consequently, the derivative measures the instantaneous change of a

function. Bearing this in mind, calculus is immediately applicable in a wide range of fields — from

physics and engineering to biology, chemistry, and medicine. Conversely, it is the aim of integral

calculus to quantify change over time given the instantaneous rate of change. Combined, differential

and integral calculus constitute an indispensable tool in many applied sciences today.

1.1 Limits and Continuity

Calculus is the study of change in functions. Essentially, a function is simply a rule that assigns to

each input x one and only one output y = f(x). Often, in this course, we will simply consider real

functions, i.e., functions that are defined such that their inputs and outputs are real numbers.

We are unwittingly very familiar with real numbers: the real numbers R include zero, all positive

and negative whole numbers, all positive and negative rational numbers (or fractions), all positive

and negative square roots of positive rational numbers, and transcendental numbers like π and e.

We will use the notation f : R → R to express that f is a function whose domain is the real

numbers R and whose codomain is the real numbers R. Explicitly, the domain of a function is

the set of all possible inputs of a function, and the codomain of a function is the set of all possible

outputs of the function. Even more, the collection of all possible outputs of a function is the range

of the function. We will adopt the set-builder notation for the domain and range of a function f.

Df = {x ∈ R | f(x) is a real number} consists of real numbers x such that f(x) is a real number.

Rf = {f(x) ∈ R | x ∈ Df} consists of real numbers f(x) such that x lies in the domain of f.

Example 1.1.1. Consider the real function f : R → R defined by f(x) = x. By definition, this

function outputs the real number x that is input. We refer to this as the identity function on the

real numbers. Consequently, the domain of f is Df = R because the output of any real number is

a real number, and the range of f is Rf = R because every real number is the output of itself.

6



1.1. LIMITS AND CONTINUITY 7

Caution: the domain of a real function might not be all real numbers; the range of a real function

might not be all real numbers, either, as our next pair of examples illustrate.

Example 1.1.2. Consider the real function f : R → R defined by f(x) = x2. By definition, this

function outputs the square x2 of the real number x that is input. Certainly, the square of any

real number is a real number, hence the domain of f is Df = R; on the other hand, the only real

numbers that are the square of another real number are the non-negative real numbers. Explicitly,

for any real number x, the real number f(x) = x2 is a non-negative real number, i.e., we have that

x2 ≥ 0. Consequently, the codomain of f is R, but the range of f is Rf = R≥0 = {y ∈ R | y ≥ 0}.

Example 1.1.3. Consider the real function f : R → R defined by f(x) =
√
x. By definition, this

function outputs the square root
√
x of the real number x that is input. We cannot take the square

root of a negative real number, hence the domain of f consists of all non-negative real numbers,

i.e., we have that Df = R≥0 = {x ∈ R | x ≥ 0}; on the other hand, every non-negative real number

can be realized as the square root of a non-negative real number. Explicitly, for any non-negative

real number y, the real number y2 satisfies that y =
√

y2 = f(y2). Consequently, the codomain of

f is R, but once again, the range of f is Rf = R≥0 = {y ∈ R | y ≥ 0}.

Generally, the restrictions on the domain of a real function consist of the following situations.

(a.) We cannot divide by zero.

(b.) We cannot take the even root of a negative real number.

(c.) We cannot take the logarithm of a non-positive real number.

Occasionally, it is necessary to split the domain or the range of a function into distinct chunks of

the real number line. By the above rule, the domain of the real function f : R → R defined by

f(x) = x−1 consists of all nonzero real numbers. Consequently, we can certainly realize the domain

of f as Df = {x ∈ R | x ̸= 0}, but it is sometimes more convenient to describe this set using the

union symbol ∪. Put simply, the union symbol ∪ functions as the logical connective “or.” Clearly,

a nonzero real number is either positive or negative, hence we can partition the domain of f into

those real numbers that are positive and those real numbers that are negative. We achieve this

with the union symbol as Df = {x ∈ R | x > 0} ∪ {x ∈ R | x < 0}. Even more, we learn in college

algebra (or earlier) that the set of real numbers x satisfying the inequalities x > 0 and x < 0 can

be described respectively using the open intervals (0,∞) and (−∞, 0). Consequently, in interval

notation, the domain of the real function f(x) = x−1 is given by Df = (−∞, 0) ∪ (0,∞).

Exercise 1.1.4. Compute the domain and range of the function f : R → R defined by f(x) = x3.

Exercise 1.1.5. Compute the domain and range of the function g : R → R defined by g(x) = x−3.

Exercise 1.1.6. Compute the domain and range of the function h : R → R defined by h(x) = 1
ln(x)

.

Consider a function f : R → R whose domain is Df . Given any real number a in Df , we say that

the limit of f(x) as x approaches a is the quantity L (if it exists) such that for every real number

ε > 0, there exists a real number δ > 0 such that |x − a| < δ implies that |f(x) − L| < ε. Put

another way, the quantity L can be made arbitrarily close to the value of f(x) by taking x to be

sufficiently close in value to a. Conveniently, if the quantity L exists, then we write L = lim
x→a

f(x).



8 CHAPTER 1. DIFFERENTIATION

Example 1.1.7. Let us compute the limit of f(x) = x2 as x approaches a = 1 using the definition.

Computing the limit is essentially like playing a game of limbo: we are handed a real number ε > 0

(the limbo bar), and our challenge is to find a real number δ > 0 such that |x2−1| < ε whenever we

assume that |x− 1| < δ. Of course, we are at liberty to take δ as small as necessary to ensure that

|x2 − 1| < ε. We may therefore assume that 0 < δ ≤ 1. Considering that x2 − 1 = (x − 1)(x + 1),

if we assume that |x − 1| < δ ≤ 1, then we must have that 0 < x < 2, from which it follows that

|x+ 1| ≤ |x|+ 1 = x+ 1 < 3 by the Triangle Inequality. Consequently, we have that

|x2 − 1| = |(x− 1)(x+ 1)| = |x− 1||x+ 1| < 3δ.

Last, if we wish to have that |x2 − 1| < ε, then we should choose δ to be the minimum of 1 and ε
3
.

One-sided limits can be defined analogously to the limit above: the left-hand limit of f(x)

as x approaches a is the quantity L− (if it exists) such that for every real number ε > 0, there

exists a real number δ > 0 such that −δ < x − a < 0 implies that |f(x) − L−| < ε. Likewise, the

right-hand limit of f(x) as x approaches a is the quantity L+ (if it exists) such that for every real

number ε > 0, there exists a real number δ > 0 such that 0 < x−a < δ implies that |f(x)−L+| < ε.

L− = lim
x→a−

f(x) is the symbolic way to express the left-hand limit of f(x) as x approaches a.

L+ = lim
x→a+

f(x) is the symbolic way to express the right-hand limit of f(x) as x approaches a.

Ultimately, the two-sided limit exists if and only if the left- and right-hand limits exist and are

equal; thus, the two-sided limit is equal to the common value of the left- and right-hand limits.

L− = lim
x→a−

f(x) = lim
x→a

f(x) = lim
x→a+

f(x) = L+

Graphically, it is possible to compute the two-sided limit L of some functions f(x) as x approaches

a by tracing one’s finger along the graph of f(x) from the left- and right-hand sides.

Example 1.1.8. Let us graphically compute the limit of f(x) = x2 as x approaches a = 1. Using

the graph of f(x) = x2, we find that the limit is 1. Particularly, if we trace the graph with our left

pointer finger, moving from left to right toward the point x = 1, our finger stops at y = f(1) = 1.

Likewise, if we trace the graph with our right pointer finger moving from right to left toward x = 1,

our finger stops at y = f(1) = 1. Put in the language of calculus, we have that L− = 1 = L+.

We say that a function f : R → R is continuous at a real number a if and only if

lim
x→a

f(x) = f(a).

Explicitly, we require three things to be true of the function f(x) in this case.

1.) We must have that f is defined at the real number a, i.e., f(a) must be in the range of f.

2.) We must have that lim
x→a−

f(x) = f(a), i.e., the left-hand limit of f at a must be f(a).

3.) We must have that lim
x→a+

f(x) = f(a), i.e., the right-hand limit of f at a must be f(a).

Consequently, if any of these criteria is violated, then the function f cannot be continuous at a.

https://en.wikipedia.org/wiki/Triangle_inequality#Normed_vector_space


1.1. LIMITS AND CONTINUITY 9

Example 1.1.9. One of the easiest ways to detect that a function is not continuous at a real

number a is to observe that the function is not defined at a. Explicitly, the function f(x) = 1
x
is

not continuous at a = 0 because the domain of f excludes a = 0 (since we cannot divide by zero).

Example 1.1.10. Consider the function f : R → R that is defined piecewise as follows.

f(x) =

{
1 if x ≥ 0 and

−1 if x < 0

Graphically, if we trace our fingers along f from the left-hand side, when we arrive at a = 0 from

the left-hand side, we find that the limiting value here is −1; however, if we trace our fingers along

f from the right-hand side, when we arrive at a = 0 from the right-hand side, we find that the

limiting value here is 1. Consequently, the function f(x) is not continuous at a = 0.

Example 1.1.11. Let us prove by definition that the function f : R → R defined by f(x) = |x| is
continuous for all real numbers a. Observe that f is defined piecewise as follows.

f(x) =

{
x if x ≥ 0 and

−x if x < 0

Consequently, it suffices to show that g(x) = x and h(x) = −x are everywhere continuous. Given

real numbers ε1, ε2 > 0, we must find real numbers δ1, δ2 > 0 such that |x − a| < ε1 whenever

|x − a| < δ1 and |−x − (−a)| < ε2 whenever |x − a| < δ2. Considering that the absolute value is

multiplicative, we have that |−x − (−a)| = |−x + a| = |−(x − a)| = |x − a|, we may simply take

the real numbers δ1 = ε1 and δ2 = ε2. We conclude that g(x) = x and h(x) = −x are continuous

for all real numbers a so that f(x) = |x| is continuous for all nonzero real numbers by the piecewise

definition of f(x) prescribed above. We are done as soon as we show that

lim
x→0−

|x| = lim
x→0−

f(x) = 0 = lim
x→0+

f(x) = lim
x→0+

|x|.

By continuity of the functions g(x) and h(x) and by definition of |x|, the left-hand limit is given by

lim
x→0−

|x| = lim
x→0−

h(x) = h(0) = 0, and the right-hand limit is lim
x→0+

|x| = lim
x→0+

g(x) = g(0) = 0.

Generally, continuity can be defined as a property of a function on any subset of its domain,

i.e., on any collection of real numbers that lie in the domain. Often, we will consider functions that

are continuous on their entire domain, but it is possible that a function is not continuous at some

point in its domain. We say that a function f is discontinuous at a real number a if f is not

continuous at the real number a. By the above three criteria, we can classify these discontinuities.

• We say that f has a removable discontinuity at a real number a if a is not in the domain of

f but the left- and right-hand limits of f at a exist and are equal, i.e., lim
x→a−

f(x) = lim
x→a+

f(x).

• We say that f has a jump discontinuity at a real number a if both of the left- and right-hand

limits of f at a exist but are not equal, i.e., lim
x→a−

f(x) = L− ̸= L+ = lim
x→a+

f(x).

• We say that f has an essential discontinuity at a real number a if either the left- or the

right-hand limit of f at a does not exist, i.e., either lim
x→a−

f(x) or lim
x→a+

f(x) does not exist.
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Often, if a function f is continuous for every real number in its domain Df , we will say that

the function is continuous on its domain. Explicitly, if the domain of a function f is all real

numbers and f is continuous on its domain, then we will say that f is everywhere continuous.

Graphically, we may detect that a function is continuous if we can draw it without lifting our pencil.

Example 1.1.12. We can graph |x| without lifting our pencil, hence it is everywhere continuous.

Example 1.1.13. We cannot graph x−2 without lifting our pencil at x = 0, hence x−2 is not

continuous at a = 0. On the other hand, for all real numbers a other than a = 0, we can graph this

function without lifting our pencil, hence x−2 is continuous on its domain (−∞, 0) ∪ (0,∞).

Continuous functions abound: polynomial functions such as x3−2x2+x−7 and exponential

functions such as ex are defined for all real numbers and are everywhere continuous. Likewise, the

trigonometric functions sin(x) and cos(x) are defined for all real numbers and are everywhere

continuous. Logarithmic functions such as ln(x) and log(x) and algebraic functions such as
√
x

and x3/2 are defined for all positive real numbers and are continuous on their domains. Further,

addition, subtraction, multiplication, division, composition, and any finite combination of these

operations on continuous functions result in functions that are typically continuous on their domains.

1.2 Differentiation and L’Hôpital’s Rule

Given any real numbers a and h > 0 and any real function f(x) such that f(a) and f(a + h) are

defined, consider the closed interval [a, a + h] consisting of all real numbers x with a ≤ x ≤ a + h.

We define the secant line of f(x) over this interval as the line passing through the points (a, f(a))

and (a+h, f(a+h)). Observe that the slope of the secant line is given by the difference quotient

Qa(h) =
f(a+ h)− f(a)

(a+ h)− a
=

f(a+ h)− f(a)

h
.

By taking the limit of Qa(h) as h approaches 0, we obtain the derivative of f(x) at a

f ′(a) = lim
h→0

Qa(h) = lim
h→0

f(a+ h)− f(a)

h
.

Of course, this limit might not exist; however, if it does, we interpret it geometrically as the slope

of the line tangent to f(x) at the point (a, f(a)). Given that the quantity f ′(a) exists, we say that

f(x) is differentiable at a. One fundamental interpretation of the derivative in the context of a

function that measures something physical (e.g., velocity) is as the instantaneous rate of change.

Exercise 1.2.1. Use the limit definition of the derivative to compute f ′(x) for f(x) = x3.

Exercise 1.2.2. Use the limit definition of the derivative to compute g′(x) for g(x) = 1
x
.

Exercise 1.2.3. Use the limit definition of the derivative to compute h′(x) for h(x) =
√
x.

One of the most important properties of differentiable real functions is the following.

Proposition 1.2.4. If a real function f is differentiable at a real number a, then f is continuous

at a. Explicitly, a function that is differentiable at a point in its domain is necessarily continuous

there. Conversely, there exists a function that is continuous but not differentiable on its domain.



1.2. DIFFERENTIATION AND L’HÔPITAL’S RULE 11

Proof. We will assume that f is differentiable at a real number a. Consequently, the limit

f ′(a) = lim
h→0

Qa(h) = lim
h→0

f(a+ h)− f(a)

h

exists. Using the substitution x = a+h, we have that h = x−a. Crucially, under this substitution,

the limit of any function g(h) as h approaches 0 is equal to the limit of the function g(x− a) as x

approaches a. (Verify this by definition of the limit.) Consequently, the following identity holds.

f ′(a) = lim
x→a

Qa(x− a) = lim
x→a

f(x)− f(a)

x− a

Considering that x− a is a polynomial function, it is continuous at a, and we conclude that

lim
x→a

(x− a) = a− a = 0.

Using the fact that the limit of a product is the product of limits (when both limits exist),

0 = f ′(a) · lim
x→a

(x− a) = lim
x→a

f(x)− f(a)

x− a
· lim
x→a

(x− a) = lim
x→a

f(x)− f(a)

x− a
· x− a = lim

x→a
[f(x)− f(a)]

yields the result that lim
x→a

f(x) = lim
x→a

[f(a) + f(x)− f(a)] = lim
x→a

f(a) + lim
x→a

[f(x)− f(a)] = f(a).

Conversely, the function |x| is continuous on its domain, but it is not differentiable at a = 0:

indeed, by Example 1.1.10, the piecewise function f(x) satisfying that f(x) = 1 for x ≥ 0 and

f(x) = −1 for x < 0 is not continuous because the left- and right-hand limits do not agree at 0.

One can readily verify that this function is exactly the derivative of |x|, hence the claim holds.

Computing limits by definition is even more tedious than it looks, but luckily, there are plenty of

tools that allow us to compute derivatives of functions without ever touching a limit. Particularly,

• the Power Rule says that if f(x) = xr for some real number r, then f ′(x) = rxr−1;

• the Product Rule says that if f(x) and g(x) are both differentiable, then

d

dx
[f(x) · g(x)] = f ′(x)g(x) + f(x)g′(x);

• the Quotient Rule says that if f(x) and g(x) are both differentiable, then

d

dx

[
f(x)

g(x)

]
=

f ′(x)g(x)− f(x)g′(x)

[g(x)]2
; and

• the Chain Rule says that if f(x) and g(x) are both differentiable, then

d

dx
[f ◦ g(x)] = d

dx
[f(g(x))] = f ′(g(x)) · g′(x) = [f ′ ◦ g(x)] · g′(x).

Computing the limit of a function that is continuous is quite easy: we may simply “plug and

chug;” however, there exist functions that are not continuous. Even worse, when evaluating limits,

we can encounter situations that result in an indeterminate form when the limit is the form

0

0
or

∞
∞

.
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Theorem 1.2.5 (L’Hôpital’s Rule). Given any real functions f(x) and g(x) that are differentiable

for all real numbers x such that a < x < b (with the possible exception of one point x = c for some

real number a ≤ c ≤ b), consider the following conditions.

(1.) We have that lim
x→c

f(x) = lim
x→c

g(x) = 0 or lim
x→c

f(x) = lim
x→c

g(x) = ±∞.

(2.) We have that g′(x) ̸= 0 for any real number x such that a < x < b and x ̸= c.

(3.) We have that lim
x→c

f ′(x)

g′(x)
exists.

Granted that each of the above conditions holds, it follows that lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
.

Exercise 1.2.6. Compute the limit of f(x) =
ln(x)

x3 − 1
as x approaches a = 1.

Exercise 1.2.7. Compute the limit of g(x) = (2x− π) sec(x) as x approaches a = π
2
from the left.

Exercise 1.2.8. Compute the limit of h(x) =
sin(x)

sin(x) + tan(x)
as x approaches a = 0.

Exercise 1.2.9. If d
dx

sin(x) = cos(x), compute the limit of f(x) =
sin(x)

x
as x approaches a = 0.

Caution: Unfortunately, the above example is not a valid proof of this limit identity: in fact, this

limit identity is needed to prove that d
dx

sin(x) = cos(x), so in order to prove this identity in a

rigorous and non-circular manner, we must use tools from trigonometry and the Squeeze Theorem.

1.3 Implicit Differentiation

Curves in the Cartesian plane can be represented by an equation involving a function of two vari-

ables. Explicitly, we are familiar with such curves as xy = 1 and y − x2 = 0; they are respectively

the functions y = f(x) = x−1 and y = g(x) = x2. We refer to the functions f(x) and g(x) as the

explicit forms of the curves. Unfortunately, it is not possible to write every curve in the Cartesian

plane as a function of one variable: curves such as the unit circle x2 + y2 = 1 or the hyperbola

y2 − x = 0 cannot be represented as functions because they fail the Vertical Line Test; however,

we will see throughout this semester that these curves provide important models in calculus. Curves

that do not admit closed-form expressions of the form y = f(x) can be written implicitly.

Under certain conditions, it is possible to find a “small enough” region in the Cartesian plane

in which an implicit curve can be represented by a function; thus, in this “window,” the slope and

tangent line of such curves are well-defined. Consequently, we may define the implicit derivative

by assuming that y is a function of x (on some “small window” in the plane) with derivative y′ = dy
dx
.

Example 1.3.1. Compute dy
dx

for the unit circle x2 + y2 = 1.

Solution. Considering the variable y as some function y = f(x) of x and using the convention that

y′ = dy
dx
, we may invoke the Chain Rule in order to determine that

0 =
d

dx
1 =

d

dx
(x2 + y2) = 2x+ 2yy′.

https://en.wikipedia.org/wiki/Squeeze_theorem#Examples
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Crucially, each time the derivative operator d
dx

encounters the variable y, we differentiate y as we

would the function y = f(x) that represents y locally. Consequently, if y is nonzero, then

dy

dx
= y′ = −2x

2y
= −x

y
.

Otherwise, the tangent line does not exist if y = 0 because 2x+2yy′ = 0 has no solution if y = 0. ⋄

Example 1.3.2. Compute dy
dx

for the parabola y2 − x = 0.

Solution. By the Chain Rule applied to y = f(x), we have that

0 =
d

dx
0 =

d

dx
(y2 − x) = 2yy′ − 1

so that dy
dx

= y′ = (2y)−1 for all points (x, y) on the hyperbola such that y is nonzero. ⋄

1.4 Exponential and Logarithmic Functions

Given any positive real number a, the exponential function with base a is given by expa(x) = ax.

Crucially, the most important exponential function is simply exp(x) = ex: here, the base is Euler’s

number e ≈ 2.72. Later, we will concern ourselves with the definition of Euler’s number; for now,

we need only recall the following properties of exponential functions for any real numbers x and y.

1.) ax+y = axay

2.) ax−y = axa−y

3.) axy = (ax)y

4.) (ab)x = axbx for any real number b > 0

We do not yet have the machinery available to use to prove the following, but it is true that

d

dx
ex = ex.

Considering that ex > 0 for all real numbers x, it follows that ex is a strictly increasing function,

hence it passes the Horizontal Line Test and must therefore admit an inverse function; we refer

to this function as the natural logarithmic function ln(x). Put another way, we have that

eln(x) = x for all real numbers x > 0 and ln(ex) = x for all real numbers x.

Observe that the range of ex is (0,∞), hence the domain of ln(x) is (0,∞). Conversely, the domain

of ex is (−∞,∞), hence the range of ln(x) is (−∞,∞). We will also simply assert that

d

dx
ln|x| = 1

x
.

We may also deduce the following properties of logarithmic functions for any real numbers x, y > 0.

1.) loga(xy) = loga(x) + loga(y)

2.) loga(x
r) = r loga(x) for all real numbers r

3.) loga(xy
−1) = loga(x)− loga(y)

4.) loga(x) =
ln(x)
ln(a)



14 CHAPTER 1. DIFFERENTIATION

Even more, for any real number a > 0, the exponential function expa(x) = ax is differentiable for

all real numbers x. Further, observe that y = ax is strictly positive for all real numbers x, hence

the function ln(y) = x ln(a) is well-defined. Using the Chain Rule, we find that

1

y
·y′ = d

dx
ln(y) =

d

dx
[x ln(a)] = ln(a)· d

dx
x = ln(a) and

d

dx
ax =

d

dx
y =

dy

dx
= y′ = y ln(a) = ax ln(a).

By a similar rationale as before, one can define the logarithmic function loga(x) base a for any

positive real number a as the function inverse of ax; its domain is (0,∞), and its range is (−∞,∞).

Exercise 1.4.1. Compute the derivative of y = loga(x) by using the fact that ay = x.

1.5 Inverse Trigonometric Functions

Even though the trigonometric functions like sin(x), cos(x), and tan(x) are periodic, we can find

a region on the x-axis in which these functions pass the Horizontal Line Test and admit function

inverses. Explicitly, the inverse trigonometric functions are denoted as follows.

arcsin(x) = sin−1(x) domain: [−1, 1] range:
[
−π

2
,
π

2

]
arccos(x) = cos−1(x) domain: [−1, 1] range: [0, π]

arctan(x) = tan−1(x) domain: (−∞,∞) range:
(
−π

2
,
π

2

)
Considering that the input of the sine function is an angle, the output of the arcsine function is an

angle. Consequently, if x = sin(θ), then it follows by definition that θ = arcsin(x) so that

d

dx
arcsin(x) =

dθ

dx
.

Observe that sin(θ) is the ratio of the opposite side and the hypotenuse of a right triangle, so we

may construct a right triangle whose opposite side has length x and whose hypotenuse has length

1 in order to obtain sin(θ) = x. Our right triangle therefore has the following form.

a

x1

θ

By the Pythagorean Theorem, we must have that x2 + a2 = 1 so that a =
√
1− x2.
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√
1− x2

x1

θ

Using the Chain Rule, we can compute
dθ

dx
. Explicitly, we have that

cos(θ) · dθ
dx

=
d

dx
sin(θ) =

d

dx
x = 1 so that

d

dx
arcsin(x) =

dθ

dx
=

1

cos(θ)
=

1√
1− x2

.

Exercise 1.5.1. Use a right triangle involving 1, x, and
√
1− x2 to compute d

dx
arccos(x).

Using a similar idea as the one we employed to compute the derivative of arcsin(x) and arccos(x),

we will set up a triangle with tan(θ) = x. Observe that tan(θ) is the ratio of the opposite side and

the adjacent side of a right triangle, so we may construct a right triangle whose opposite side has

length x and whose adjacent side has length 1 in order to obtain tan(θ) = x.

1

xh

θ

Once again, by the Pythagorean Theorem, we find that h2 = x2 + 12 so that h =
√
1 + x2.

1

x
√
1 + x2

θ

Using the Chain Rule, we can compute
dθ

dx
. Explicitly, we have that

sec2(θ) · dθ
dx

=
d

dx
tan(θ) =

d

dx
x = 1 so that

d

dx
arctan(x) =

dθ

dx
= cos2(θ) =

1

1 + x2
.
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Exercise 1.5.2. Use a right triangle involving 1, x, and
√
1 + x2 to compute d

dx
arccot(x).

Last but not least, we will set up a triangle with sec(θ) = x. Observe that sec(θ) is the ratio of

the hypotenuse to the adjacent side of a right triangle, so we obtain the following diagram.

1

ox

θ

Once again, by the Pythagorean Theorem, we find that x2 = o2 + 12 so that o =
√
x2 − 1.

1

√
x2 − 1x

θ

Using the Chain Rule, we can compute
dθ

dx
. Explicitly, we have that

sec(θ) tan(θ) · dθ
dx

=
d

dx
sec(θ) =

d

dx
x = 1 so that

d

dx
arcsec(x) =

dθ

dx
= cos(θ) cot(θ) =

1

x
√
x2 − 1

.

Exercise 1.5.3. Use a right triangle involving 1, x, and
√
x2 − 1 to compute d

dx
arccsc(x).



Chapter 2

Integration

2.1 Antidifferentiation

Considering that a derivative is a rate of change, it is natural in the applied sciences to begin with a

rate of change and use it to estimate the net change of a process over time. Explicitly, if we observe

that the velocity of a body is given by a function f(x) over some interval of time, then we may seek

a function F (x) such that F ′(x) = f(x) over this interval of time. Given that such a function F (x)

exists and satisfies that F ′(x) = f(x), we refer to F (x) as an antiderivative of f(x).

Exercise 2.1.1. Prove that the function F (x) = 1
3
x3 is an antiderivative of f(x) = x2.

Exercise 2.1.2. Prove that the function G(x) = x ln(x)− x is an antiderivative of g(x) = ln(x).

Exercise 2.1.3. Prove that the function H(x) = xex − ex is an antiderivative of h(x) = xex.

Observe that for any antiderivative F (x) of a function f(x), there exists a family of antideriva-

tives indexed by the real numbers. Particularly, the function G(x) = F (x) +C is an antiderivative

of f(x) for every real number C. Even more, by the Mean Value Theorem, every antiderivative

of f(x) is of the form F (x) + C for some antiderivative F (x) of f(x) and some real number C.

Consequently, we may define the general antiderivative or indefinite integral of f(x) to be∫
f(x) dx = F (x) + C

for any real number C. By the familiar derivative rules, we obtain

• the Power Rule, i.e.,
∫
xr dx = 1

r+1
xr+1 + C for all real numbers r ̸= −1 and

• the Chain Rule, i.e.,
∫
f ′(g(x))g′(x) dx = f(g(x)) + C.

Further, indefinite integration is linear: for all real functions f(x) and g(x), we have

• the Multiples Rule
∫
kf(x) dx = k

(∫
f(x) dx

)
for all real numbers k and

• the Sum Rule
∫
[f(x) + g(x)] dx =

∫
f(x) dx+

∫
g(x) dx

Exercise 2.1.4. Compute the indefinite integral of f(x) = x−1.

Exercise 2.1.5. Compute the indefinite integral of g(x) = 2xex
2
.

17
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Exercise 2.1.6. Compute the indefinite integral of h(x) = 2 sin(x) cos(x).

Circling back to the opening remarks of this section, we will assume that the velocity of a body

over an interval of time is a continuous function v(t). Even more, suppose that we note the position

s(t) of the particle at time t = 0, i.e., the quantity s(0) is known. Considering that s′(t) = v(t), it

follows that s(t) must differ from
∫
v(t) dt by a constant C that depends on the quantity s(0). We

refer to this scenario as an initial value problem of the differential equation s′(t) = v(t).

Example 2.1.7. Consider the velocity function v(t) = 3t2 − 4t + 2 of a body whose position s(t)

at time t = 0 is given by s(0) = 7. Give an explicit formula for s(t).

Solution. Observe that s(t) =
∫
v(t) dt =

∫
3t2 dt−

∫
4t dt =

∫
2 dt = t3− 2t2+2t+C. By plugging

in our initial value of s(0) = 7, we find that 7 = s(0) = C so that s(t) = t3 − 2t2 + 2t+ 7. ⋄

Exercise 2.1.8. Consider tossing a ball upward with an initial velocity of 48 feet per second and

constant acceleration of −32 feet per second from the edge of a cliff of height 432 feet. Compute

the maximum height of the ball; then, find the time it takes for the ball to reach the ground.

2.2 Computing Area Bounded by a Curve of One Variable

Continuing in the theme of extrapolating data from intermittent observations, suppose that we

observe the velocity v(t) of a particle over a period of time 0 ≤ t ≤ 25, taking care to mark down

the velocity of the particle every five seconds. Consider along these lines the following table.

t 0 5 10 15 20 25

v(t) 25 31 35 43 47 46

We can roughly approximate the total distance traveled by the body for 0 ≤ t ≤ 25 by assuming

(incorrectly) that the body maintains a constant velocity each time we see it. Computing the total

distance travelled by the particle during our observation amounts to finding the displacement of

the body over each time interval and adding these quantities together. Explicitly, we have that

total distance traveled = 25 · 5 + 31 · 5 + 35 · 5 + 43 · 5 + 47 · 5 + 46 · 5 = 1135.

Certainly, we can improve this estimation by taking more measurements: even recording one more

observation will give us a better understanding of the behavior of the particle over the specified

interval of time. Better yet, the more observations we record, the more accurate our understanding of

the total distance traveled; however, this also requires adding more numbers together. Consequently,

it will be convenient to develop notation to take sums of arbitrarily large quantities of data.

Let us assume for the moment that we have a collection of n real numbers a1, a2, . . . , an for some

positive integer n. Certainly, the sum of these real numbers can be realized as

n∑
i=1

ai = a1 + a2 + · · ·+ an.

We refer to this as sigma notation: indeed, the Greek letter sigma Σ is used as a mnemonic device

for “sum”; the subscript i = 1 denotes the index of summation and informs us of the first term
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a1 in our collection of data; and the superscript n tells us that the sum terminates with the last

term an in our collection of data. We refer to the real number ai as the ith summand for each

integer 1 ≤ i ≤ n; the entire sum
∑n

i=1 ai = a1 + a2 + · · ·+ an is called a finite sum.

Often, we will consider finite sums whose ith summand can be conveniently expressed in closed-

form. Explicitly, this means that there exists a function f(x) such that ai = f(i).

Example 2.2.1. Consider the finite sum 1 + 2 + 3 + · · · + 10 of the first ten positive integers.

Observe that the ith summand is simply the positive integer i, hence we have that ai = i and

1 + 2 + 3 + · · ·+ 10 =
10∑
i=1

i.

Crucially, we point out another way to index the given sum — namely, we have that

10∑
i=1

i = 1 + 2 + 3 + · · ·+ 10 = 0 + 1 + 2 + 3 + · · ·+ 10 =
10∑
i=0

i.

Often, if a sum involves a summand of zero, we will simply omit it (unless it is more convenient to

include it). We could have also written this sum in a third way as follows.

10∑
i=1

i = 1 + 2 + 3 + · · ·+ 10 = (1 + 2 + 3 + · · ·+ 20)− (11 + 12 + 13 + · · ·+ 20) =
20∑
i=1

i−
20∑

i=11

i.

Example 2.2.2. Consider the finite sum 1 + 4 + 9 + · · · + 100 of squares of the first ten positive

integers in which the ith summand is simply the positive integer i2. We have that ai = i2 and

1 + 4 + 9 + · · ·+ 100 =
10∑
i=1

i2.

Example 2.2.3. Express the finite sum 13+23+33+ · · ·+10003 of cubes of the first 1000 positive

integers in summation notation, identifying the closed-form expression for the ith summand ai.

Quite importantly, finite sums admit a convenient arithmetic of their own.

Proposition 2.2.4 (Properties of Finite Sums). Given any positive integer n and any real numbers

a1, . . . , an, b1, . . . , bn, and C, the following identities hold.

(i.) (Empty Sum Law) We have that
∑m

i=n ai = 0 for all integers m < n.

(ii.) (Constant Sum Formula) We have that
∑n

i=m C = C(n−m+ 1) for all integers m ≤ n.

(iii.) (Linearity of a Finite Sum I) We have that
∑n

i=1Cai = C(
∑n

i=1 ai).

(iv.) (Linearity of a Finite Sum II) We have that
∑n

i=1(ai + bi) =
∑n

i=1 ai +
∑n

i=1 bi.

One can easily prove the above formulas by expanding and comparing the expressions on both

sides of the equation. We will not endeavor to prove the following identities because these details

are beyond the scope of this course; however, they will be indispensable in what follows.
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Proposition 2.2.5. Consider any positive integer n.

(i.) We have that
n∑

i=1

i =
n(n+ 1)

2
.

(ii.) We have that
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6
.

(iii.) We have that
n∑

i=1

i3 =

[
n(n+ 1)

2

]2
.

Going back to our example of tracking a particle over a period of time, if we know the velocity

v(t) of the particle at any time 0 ≤ t ≤ 25, then we can approximate the total distance traveled by

the particle by recording the velocity a positive integer n times and computing the total displacement

of the particle over each interval of time. Explicitly, if we observe the particle for some real numbers

0 = t0 < t1 < · · · < tn = 25 and we assume that the particle has constant velocity v(ti) for each

integer 0 ≤ i ≤ n, then the total distance traveled by the particle between time ti−1 and time ti is

given by the real number ∆ti = ti − ti−1 and the total displacement of the particle on this closed

interval [ti−1, ti] is v(ti)∆ti (rate × time). Consequently, in sigma notation, we have that

total distance traveled = v(t1)∆t1 + v(t2)∆t2 + · · ·+ v(tn)∆tn =
n∑

i=1

v(ti)∆ti.

By viewing the points (ti, v(ti)) as lying on the graph of the velocity curve v(t), we may recognize∑n
i=1 v(ti)∆ti as an approximation of the area between the curve v(t) and the t-axis, i.e., the net

area bounded by the curve v(t) of one variable. We will now generalize this idea.

Consider any real function f(x) that is continuous on a closed and bounded interval [a, b]. Choose

any positive integer n; then, choose n real numbers a = x0 < x1 < · · · < xn = b. Consider the closed

and bounded intervals [xi−1, xi] for each integer 1 ≤ i ≤ n. We refer to the collection P of such

closed and bounded intervals as a partition of [a, b], and we denote by ∆xi = xi − xi−1 the length

of the interval [xi−1, xi]. Choosing sample points x∗
i such that xi−1 ≤ x∗

i ≤ xi yields a so-called

tagged partition (P , x∗
i ) consisting of closed and bounded intervals and sample points within

them. We associate to each tagged partition a Riemann sum (or Riemann approximation)

n∑
i=1

f(x∗
i )∆xi = f(x∗

1)∆x1 + f(x∗
2)∆x2 + · · ·+ f(x∗

n)∆xn.

Geometrically, we may realize f(x∗
i ) as the height of a rectangle with base ∆xi, hence the above

Riemann sum provides an approximation of the net area bounded by the curve f(x) over the closed

interval [a, b]. Common tagged partitions are formed by taking x∗
i to be the left- or right-endpoint

or the midpoint of [xi−1, xi]. Each of these tagged partitions uses n + 1 equally-spaced points

a = x0 < x1 < · · · < xn = b; the common length of each interval [xi−1, xi] is ∆x. Considering that

b− a = ∆x1 +∆x2 + · · ·+∆xn =
n∑

i=1

∆xi =
n∑

i=1

∆x = n∆x

by the second part of Proposition 2.2.4, we conclude that ∆x = b−a
n
.
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• We denote by Ln the left-endpoint Riemann approximation of the function f(x) on the

closed interval [a, b] with ∆xi = ∆x = b−a
n

and sample points x∗
i = ℓi = a+ (i− 1)∆x.

• We denote by Rn the right-endpoint Riemann approximation of the function f(x) on

the closed interval [a, b] with ∆xi = ∆x = b−a
n

and sample points x∗
i = ri = a+ i∆x.

• We denote by Mn the midpoint Riemann approximation of the function f(x) on the

closed interval [a, b] with ∆xi = ∆x = b−a
n

and sample points x∗
i = mi = a+ 2i−1

2
∆x.

Example 2.2.6. Compute the left- and right-endpoint and midpoint Riemann approximations of

the curve f(x) = x on the closed and bounded interval [0, 4] using four equally-spaced points.

Solution. By recognizing that a = 0 and b = 4, the length of each interval of the partition is

∆xi = ∆x =
4− 0

4
=

4

4
= 1.

Consequently, the left-endpoint approximation satisfies that ℓi = 0 + (i − 1)1 = i − 1; the right-

endpoint approximation satisfies that ri = 0+ i = i; and the midpoint approximation satisfies that

mi = 0 + 2i−1
2

(1) = 2i−1
2

for each integer 1 ≤ i ≤ 4. We conclude therefore that the following hold.

L4 =
4∑

i=1

f(ℓi)∆x =
4∑

i=1

ℓi =
4∑

i=1

(i− 1) =
4∑

i=1

i−
4∑

i=1

1 =
4(4 + 1)

2
− 4 = 6

R4 =
4∑

i=1

f(ri)∆x =
4∑

i=1

ri =
4∑

i=1

i =
4(4 + 1)

2
= 10

M4 =
4∑

i=1

f(mi)∆x =
4∑

i=1

2i− 1

2
=

4∑
i=1

i−
4∑

i=1

1

2
= 10− 1

2
(4) = 8 ⋄

Example 2.2.7. Compute the left- and right-endpoint and midpoint Riemann approximations of

the curve g(x) = x2 on the closed and bounded interval [0, 1] using five equally-spaced points.

Solution. Like before, we find that a = 0 and b = 1 so that the length of each interval is

∆x =
1− 0

5
=

1

5
.

By the above, the left-endpoint approximation uses the sample points ℓi = 0 + (i − 1)∆x = i−1
5
;

the right-endpoint approximation uses the sample points ri = 0 + i∆x = i
5
; and the midpoint
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approximation uses the sample points mi = 0 + 2i−1
2

∆x = 2i−1
10

. We conclude that

L5 =
5∑

i=1

g(ℓi)∆x =
5∑

i=1

ℓ2i
5

=
1

5

5∑
i=1

(
i− 1

5

)2
=

1

5

(
0 +

1

25
+

4

25
+

9

25
+

16

25

)
=

30

75
=

6

25

R5 =
5∑

i=1

g(ℓi)∆x =
5∑

i=1

r2i
5

=
1

5

5∑
i=1

(
i

5

)2
=

1

5

(
1

25
+

4

25
+

9

25
+

16

25
+

25

25

)
=

55

75
=

11

25

M5 =
5∑

i=1

g(mi)∆x =
5∑

i=1

m2
i

5
=

1

5

5∑
i=1

(
2i− 1

10

)2
=

1

5

(
1

100
+

9

100
+

25

100
+

49

100
+

81

100

)
=

33

100
⋄

Exercise 2.2.8. Compute the left- and right-endpoint and midpoint Riemann approximations of

the curve h(x) = x3 on the closed and bounded interval [0, 2] using eight equally-spaced points.

By allowing the number of sample points to grow arbitrarily large, the error of approximating

the area bounded by a curve of one variable by a Riemann sum shrinks to zero, hence we define

area bounded by the curve f(x) on the closed and bounded interval [a, b] = lim
n→∞

n∑
i=1

f(x∗
i )∆xi,

where x∗
i are sample points of a partition P of [a, b] and ∆xi = xi−xi−1 for each integer 1 ≤ i ≤ n.

Example 2.2.9. Compute the area bounded by f(x) = x2 on the closed interval [0, 1].

Solution. Crucially, the above definition of the area does not depend on the choice sample points

x∗
i or the partition P of [0, 1], so we may carefully construct these to make things as convenient

as possible. Given any choice of equally-spaced points a = x0 < x1 < · · · < xn = b, we have that

∆x = 1−0
n

= 1
n
. We may choose the right-endpoint approximation so that x∗

i =
i
n
and

Rn =
n∑

i=1

f(x∗
i )∆x =

n∑
i=1

(
i

n

)2(
1

n

)
=

n∑
i=1

i2

n3
=

1

n3

n∑
i=1

i2 =
1

n3
· n(n+ 1)(2n+ 1)

6

by the second part of Proposition 2.2.5. By taking the limit as n → ∞, we conclude that

area bounded by x2 on [0, 1] = lim
n→∞

Rn = lim
n→∞

n(n+ 1)(2n+ 1)

6n3
=

2

6
=

1

3
. ⋄

2.3 Definite Integration

Given any real function f(x) and any real numbers a and b, consider any collection of points

(xn, f(xn)) on the graph of f(x) with a = x0 < x1 < · · · < xn = b and ∆xi = xi − xi−1 for each

integer 1 ≤ i ≤ n. Each of the closed and bounded intervals [xi−1, xi] gives rise to a partition P
of the closed interval [a, b], and we may choose sample points x∗

i for each integer 1 ≤ i ≤ n such

that xi−1 ≤ x∗
i ≤ xi and x∗

1 < x∗
2 < · · · < x∗

n. Crucially, we are not assuming here that the points

x0, x1, . . . , xn are equally-spaced, hence we may denote ∥P∥ = max{∆xi | 1 ≤ i ≤ n}. We define∫ b

a

f(x) dx = lim
∥P∥→0

n∑
i=1

f(x∗
i )∆xi
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as the definite integral of f(x) on the closed and bounded interval [a, b]. Provided that the above

limit exists, we say that f(x) is integrable on [a, b]. We refer to the function f(x) in this case

as the integrand; the real numbers a and b are the limits of integration. By our work in the

previous section, we may interpret the definite integral
∫ b

a
f(x) dx as the net area bounded by f(x):

indeed,
∑n

i=1 f(x
∗
i )∆xi is a Riemann sum representing rectangles of height f(x∗

i ) and width ∆xi.

Example 2.3.1. Express the following as the definite integral of a function on the interval [1, 8].

lim
∥P∥→0

n∑
i=1

√
2x∗

i + (x∗
i )

2∆xi

Solution. Considering that we do not know the partition P or the sample points x∗
i , there is not

much we can do other than recognize the function f(x). Comparing the limit with the definition

above, we recognize that f(x) =
√
2x+ x2 so that the limit in question is

∫ 8

1

√
2x+ x2 dx. ⋄

Exercise 2.3.2. Express the following as the definite integral of a function on the interval [0, π].

lim
∥P∥→0

n∑
i=1

x∗
i sin(x

∗
i )∆xi

Often, it is most simple to work with a regular partition P , i.e., a partition of [a, b] with n+1

equally-spaced points a = x0 < x1 < · · · < xn = b such that ∆x1 = ∆x2 = · · · = ∆xn = ∆x = b−a
n
.

Under this identification, we have that ∆x1 = x1 − x0 so that x1 = x0 +∆x1 = a+∆x, from which

it follows that x2 = x1 + ∆x2 = (a + ∆x) + ∆x = a + 2∆x and xi = a + i∆x for each integer

1 ≤ i ≤ n. Choosing our sample points such that x∗
i = xi = a+ i∆x and using the fact that

∥P∥ = max{∆xi | 1 ≤ i ≤ n} = ∆x =
b− a

n

approaches zero if and only if n approaches ∞, we conclude that∫ b

a

f(x) dx = lim
∥P∥→0

n∑
i=1

f(x∗
i )∆xi = lim

n→∞

n∑
i=1

f(a+ i∆x)

(
b− a

n

)
.

Example 2.3.3. Express the following as the definite integral of a function on a closed interval.

lim
n→∞

n∑
i=1

cos

(
−π + i

2π

n

)(
2π

n

)
Solution. Considering that ∆x = 2π

n
= b−a

n
and a = −π, we must have b = a+n∆x = −π+2π = π.

Even more, the integrand is cos(x), hence the limit describes the quantity
∫ π

−π
cos(x) dx. ⋄

Before we endeavor to compute any definite integrals by the limit definition provided above, it

is conceptually important to note that the definite integral can be computed by hand in some cases

without appealing to any limits. Explicitly, for any real numbers c and d, we have that
∫ b

a
(cx+d) dx

represents the net area bounded by the line cx+d and the coordinate axes. Consequently, this area

can be computed geometrically as a linear combination of areas of triangles and rectangles.

Exercise 2.3.4. Compute the definite integral
∫ 3

−2
(3x− 2) dx using geometry.
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Exercise 2.3.5. Compute the definite integral
∫ 2

−3
(5− 2x) dx using geometry.

Likewise, for any function of the form y = f(x) =
√
r2 − x2, it follows that x2 + y2 = r2 yields

a circle of radius r, hence we can determine an integral of the form
∫ r

−r

√
r2 − x2 dx.

Exercise 2.3.6. Compute the definite integral
∫ 1

−1

√
1− x2 dx using geometry.

Often, we will deal with definite integrals that cannot be computed by geometry; for now, if we

encounter this situation, we can sometimes use the limit definition of the definite integral.

Example 2.3.7. Compute the definite integral
∫ 1

0
x2 dx as the limit of a Riemann approximation

as the number n of subintervals tends to infinity.

Solution. Considering that a = 0 and b = 1, we have that

∆x =
b− a

n
=

1− 0

n
=

1

n

so that a+ i∆x = 0 + i
n
= i

n
. Consequently, it follows that∫ 1

0

x2 dx = lim
n→∞

n∑
i=1

(
i

n

)2(
1

n

)
= lim

n→∞

1

n3

n∑
i=1

i2 = lim
n→∞

1

n3
· n(n+ 1)(2n+ 1)

6
=

1

3
. ⋄

Example 2.3.8. Compute the definite integral
∫ 3

0
(x3 − 6x) dx as the limit of a Riemann approxi-

mation as the number n of subintervals tends to infinity.

Solution. Considering that a = 0 and b = 3, we have that

∆x =
b− a

n
=

3− 0

n
=

3

n

so that a+ i∆x = 0 + 3i
n
= 3i

n
. Consequently, it follows that∫ 3

0

(x3 − 6x) dx = lim
n→∞

n∑
i=1

[(
3i

n

)3
− 6

(
3i

n

)](
3

n

)
= lim

n→∞

3

n2

n∑
i=1

(
27i3

n2
− 18i

)
.

Granted that the limit of each of these Riemann sums exists, the limit of their difference is given

by the difference of their limits, hence it suffices to compute these limits separately.

lim
n→∞

3

n2

n∑
i=1

81i3

n2
= lim

n→∞

81

n4

n∑
i=1

i3 = lim
n→∞

81

n4
·
[
n(n+ 1)

2

]2
=

81

4

lim
n→∞

3

n2

n∑
i=1

18i = lim
n→∞

54

n2

n∑
i=1

i = lim
n→∞

54

n2
· n(n+ 1)

2
=

54

2
=

108

4

Consequently, we have that
∫ 3

0
(x3 − 6x) dx = 81

4
− 108

4
= −27

4
. ⋄

Based on the definition of the definite integrals and the summation properties outlined in the

previous section, we can extrapolate the following properties of definite integrals.
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Proposition 2.3.9 (Properties of Definite Integrals). Given any real function f(x) that is integrable

on a closed and bounded interval [a, b], the following properties hold for
∫ b

a
f(x) dx.

(i.) (Empty Integral Law)
∫ a

a
f(x) dx = 0

(ii.) (Reversing the Limits of Integration)
∫ a

b
f(x) dx = −

∫ b

a
f(x) dx

(iii.) (Additivity of Adjacent Intervals)
∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx for all real numbers c

(iv.) (Constant Integral Formula)
∫ b

a
k dx = k(b− a) for all real numbers k

(v.) (Linearity of a Definite Integral I)
∫ b

a
kf(x) dx = k

∫ b

a
f(x) dx for all real numbers k

(vi.) (Linearity of a Definite Integral II)
∫ b

a
[f(x) + g(x)] dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx

Example 2.3.10. Compute the definite integral
∫ 1

0
(3x2 + 4) dx.

Solution. By appealing to Example 2.3.7 and Proposition 2.3.9, we have that∫ 1

0

(3x2 + 4) dx =

∫ 1

0

3x2 dx+

∫ 1

0

4 dx = 3

∫ 1

0

x2 dx+ 4(1− 0) = 3

(
1

3

)
+ 4 = 5. ⋄

Example 2.3.11. Given any pair of real functions f(x) and g(x) such that
∫ 1

−1
f(x) dx = 2 and∫ 1

−1
g(x) dx = −1, compute the definite integral

∫ 1

−1
[3f(x)− g(x)] dx.

Solution. By appealing to Proposition 2.3.9, we have that∫ 1

−1

[3f(x)− g(x)] dx =

∫ 1

−1

(3f(x) + [−g(x)]) dx

=

∫ 1

−1

3f(x) dx+

∫ 1

−1

[−g(x)] dx

= 3

∫ 1

−1

f(x) dx−
∫ 1

−1

g(x) dx = 3(2)− (−1) = 7. ⋄

Example 2.3.12. Given any real function f(x) such that
∫ 4

0
f(x) dx = 1,

∫ 3

−2
f(x) dx = 3, and∫ 0

−2
f(x) dx = 5, compute the definite integral

∫ 4

3
f(x) dx.

Solution. By appealing to Proposition 2.3.9, we have that∫ 4

3

f(x) dx =

∫ −2

3

f(x) dx+

∫ 4

−2

f(x) dx

= −
∫ 3

−2

f(x) dx+

∫ 4

−2

f(x) dx

= −
∫ 3

−2

f(x) dx+

∫ 0

−2

f(x) dx+

∫ 4

0

f(x) dx = −3 + 5 + 1 = 3. ⋄
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2.4 The Fundamental Theorem of Calculus

Calculus can be divided into two topics — differentiation and integration — that are connected

by the Fundamental Theorem of Calculus. Essentially, the Fundamental Theorem of Calculus says

that differentiation and integration are inverse operations: if f(x) is continuous on an open interval,

then f(x) admits an antiderivative by the definite integral, and conversely, the definite integral of

f(x) over a closed interval measures the net change of any antiderivative over that interval.

Theorem 2.4.1 (Fundamental Theorem of Calculus, Part I). Given any real function f(x) that is

integrable with a continuous antiderivative F (x) on a closed interval [a, b], we have that∫ b

a

f(x) dx = F (b)− F (a).

Even more, this quantity measures the net area bounded by the curve f(x) from x = a to x = b.

Proof. Observe that the quantity F (b)−F (a) measures the net change of F (x) on the closed interval

[a, b]. Given any collection of n real numbers a = x0 < x1 < · · · < xn = b, we have that

F (b)− F (a) = F (b)− F (xn−1) + F (xn−1)− F (xn−2) + · · ·+ F (x1)− F (a)

by adding and subtracting F (xi) for each integer 1 ≤ i ≤ n− 1. Grouping each consecutive pair of

differences and using the fact that a = x0 and b = xn, it follows that

F (b)− F (a) =
n∑

i=1

[F (xi)− F (xi−1)].

By the Mean Value Theorem applied to F (x), for each integer 1 ≤ i ≤ n, there exists a real number

x∗
i such that xi−1 ≤ x∗

i ≤ xi and F (xi) − F (xi−1) = F ′(x∗
i )(xi − xi−1). By assumption that F (x)

is an antiderivative of f(x) on the closed interval [a, b], we have that F ′(x) = f(x), hence we can

rewrite each of these equations as F (xi) − F (xi−1) = f(x∗
i )∆xi for the quantity ∆xi = xi − xi−1.

Going back to our above displayed equation with this new identity, we have that

F (b)− F (a) =
n∑

i=1

f(x∗
i )∆xi.

By taking the limit as n approaches ∞ on both sides, we conclude the desired result that

F (b)− F (a) = lim
n→∞

[F (b)− F (a)] = lim
n→∞

n∑
i=1

f(x∗
i )∆xi =

∫ b

a

f(x) dx.

Consequently, if v(t) measures the velocity of a particle over time, then the (definite) integral of

v(t) over [a, b] measures the total distance travelled by the particle from time t = a to time t = b.

Exercise 2.4.2. Compute the net area bounded by the curve f(x) = x3 from x = −1 to x = 1.

Exercise 2.4.3. Compute the net area bounded by the curve g(x) = sin(x) from x = −π
2
to x = π

2
.

Exercise 2.4.4. Compute the net area bounded by the curve h(x) = 1
x
from x = 1 to x = e.
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Remark 2.4.5. Like we previously mentioned, if F (x) is an antiderivative of a real function f(x)

on a closed interval [a, b], the Mean Value Theorem implies that every antiderivative of f(x) over

[a, b] is of the form F (x) +C for some real number C. Consequently, the choice of antiderivative of

f(x) does not matter when it comes to computing the definite integral of f(x) on [a, b]:∫ b

a

f(x) dx = [F (b) + C]− [F (a) + C] = F (b)− F (a)

holds for all real numbers C by the Fundamental Theorem of Calculus, Part I.

One other way to interpret the first part of the Fundamental Theorem of Calculus is as follows.

Corollary 2.4.6 (Net Change Theorem). Given any differentiable function f(x) on an open interval

(a, b) such that f(a) and f(b) are defined, we have that

f(b)− f(a) =

∫ b

a

f ′(x) dx.

Put another way, the net change of f(x) over the closed interval [a, b] is
∫ b

a
f ′(x) dx.

Exercise 2.4.7. Consider a leaky water heater that loses 2 + 5t gallons of water per hour for each

hour after 7 AM. Compute the total amount of water leaked between the time of 9 AM and 12 PM.

Exercise 2.4.8. Consider any medication that disperses into a patient’s bloodstream at a rate of

50− 2
√
t milligrams per hour from the time it is administered. Compute the amount of medication

dispersed into a patient’s bloodstream one hour after it is administered. Given that one full dose is

50 milligrams, what percentage of the dose reaches the patient’s bloodstream in an hour?

Exercise 2.4.9. Consider any particle that moves with velocity t3 − 10t2 + 24t meters per second

after initial observation at time t = 0. Compute the total displacement of and the total distance

travelled by the particle from time t = 0 to time t = 6; then, compare the values.

Conversely, the second part of the Fundamental Theorem of Calculus states that every contin-

uous function on a closed interval [a, b] admits an antiderivative in the form of a definite integral.

Theorem 2.4.10 (Fundamental Theorem of Calculus, Part II). Given any real function f(x) that

is continuous on a closed interval [a, b], for all real numbers a < x < b, we have that

d

dx

∫ x

a

f(t) dt = f(x).

Proof. Considering that f(x) is continuous on [a, b], it is integrable on [a, b], hence we may define

F (x) =

∫ x

a

f(t) dt

for all real numbers a ≤ x ≤ b. We must demonstrate that for all real numbers a < x < b, the limit

d

dx
F (x) = lim

h→0

F (x+ h)− F (x)

h
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exists. By the second and third parts of Proposition 2.3.9, it follows that

F (x+ h)− F (x) =

∫ x+h

a

f(t) dt−
∫ x

a

f(t) dt =

∫ x+h

a

f(t) dt+

∫ a

x

f(t) dt =

∫ x+h

x

f(t) dt.

By the Mean Value Theorem for Definite Integrals, there exists a real number c (depending

upon h) such that x < c < x+ h and
∫ x+h

x
f(t) dt = f(c)[(x+ h)− x] = f(c)h so that

f(c) =
F (x+ h)− F (x)

h
.

Considering that f(x) is continuous on the closed interval [a, b], it follows that

f
(
lim
h→0

c
)
= lim

h→0
f(c) = lim

h→0

F (x+ h)− F (x)

h
= F ′(x),

hence it suffices to compute the limit of c as h approaches 0. By the Squeeze Theorem, we have

x = lim
h→0

x ≤ lim
h→0

c ≤ lim
h→0

(x+ h) = x

so that lim
h→0

c = x and F ′(x) = f(x) for all real numbers a < x < b, as desired.

Exercise 2.4.11. Compute the derivative of
∫ x

0
sin(t) dt for any real number x > 0.

Exercise 2.4.12. Compute the derivative of
∫ x

−1
et dx for any real number x > −1.

Exercise 2.4.13. Compute the derivative of
∫ x

1
ln(t) dt for any real number x > 1.

Exercise 2.4.14. Given any differentiable real functions f(x), g(x), and h(x), use the Fundamental

Theorem of Calculus, Part II and the Chain Rule for derivatives to prove that

d

dx

∫ h(x)

g(x)

f(t) dt = f(h(x))h′(x)− f(g(x))g′(x).

Exercise 2.4.15. Compute the derivative of
∫ x2

0
sin(cos(t)) dt for any real number x > 0.

Exercise 2.4.16. Compute the derivative of
∫ 10

ln(x)

√
t2 + 1 dt for any real number 0 < x < e10.

Exercise 2.4.17. Compute the derivative of
∫ x2

x3

√
t dt for any real number 0 < x < 1.

2.5 u-Substitution

Until now, we have managed to find the antiderivatives of many functions by viewing antidifferen-

tiation as the inverse to differentiation (in the sense of the Fundamental Theorem of Calculus, Part

I) and subsequently using the appropriate analog of the familiar rules for differentiation such as the

Power Rule and the Chain Rule. Explicitly, given any real number r ̸= −1, we have that∫
xr dx =

1

r + 1
xr+1 + C

by the Power Rule. Further, for any differentiable functions f(x) and g(x), we have that∫
f ′(g(x))g′(x) dx = f(g(x)) + C
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by the Chain Rule. Essentially, if we make the assignment u = g(x), then it follows that du
dx

= g′(x)

and f ′(g(x))g′(x) = f ′(u)du
dx
. Conventionally, this relationship is written as du = g′(x) dx so that

f ′(g(x))g′(x) dx = f ′(u) du. Considering that f(u) is an antiderivative of f ′(u), it follows that∫
f ′(g(x))g′(x) dx =

∫
f ′(u) du = f(u) + C = f(g(x)) + C.

Colloquially, we refer to this technique (and its broader applications) as u-substitution.

Exercise 2.5.1. Compute the indefinite integral of f(x) = (x+ 1)100.

Exercise 2.5.2. Compute the indefinite integral of g(x) = x cos(2x2).

Exercise 2.5.3. Compute the indefinite integral of h(x) = x2ex
3
.

Exercise 2.5.4. Compute the indefinite integral of k(x) = x
√
2x− 1.

Even more, the technique of u-substitution can be used to evaluate definite integrals. Explicitly,

suppose that f ′(x) is integrable on the closed interval [g(a), g(b)] and f ′(g(x))g′(x) is integrable on

the closed interval [a, b]. By performing the substitution u = g(x), we have that du = g′(x) dx and

f ′(g(x))g′(x) dx = f ′(u) du. Even more, if x = a, then u = g(a), and if x = b, then u = g(b) so that∫ b

a

f ′(g(x))g′(x) dx =

∫ g(b)

g(a)

f ′(u) du.

Exercise 2.5.5. Compute the definite integral
∫ 1

0
x4(x5 − 1)10 dx.

Exercise 2.5.6. Compute the definite integral
∫ π/4

−π/4
2x sec2(x2) dx

Exercise 2.5.7. Compute the definite integral
∫ e

1
ln(x)
x

dx.

We say that a real function f(x) is even if it holds that f(−x) = f(x) for all real numbers x in

the domain of f such that −x is in the domain of f. Consequently, the polynomial 3x4−x2+2 and

the trigonometric function cos(x) are even functions. Conversely, we say that f(x) is odd if it holds

that f(−x) = −f(x) for all real numbers x in the domain of f such that −x is in the domain of f.

We note that the polynomial 4x5 + x+ 1 and the trigonometric function sin(x) are odd functions.

We refer to the property that a function is even or odd as the parity of the function. We note that

a function need not have parity, as illustrated by the fact that f(x) = x2+x does not satisfy either

f(−x) = f(x) or f(−x) = −f(x); however, the parity of a function is always well-defined.

Exercise 2.5.8. Explain whether f(x) = tan(x) is even, odd, or neither.

Exercise 2.5.9. Explain whether g(x) = x2ex is even, odd, or neither.

Exercise 2.5.10. Explain whether h(x) = sin2(x) is even, odd, or neither.

Proposition 2.5.11 (Properties of Function Parity). Consider any real functions f(x) and g(x).

(i.) (Preservation of Parity Under Nonzero Scalar Multiple) If f(x) has parity, then for all nonzero

real numbers α, the scalar multiple αf(x) of f(x) by α has the same parity as f(x).

(ii.) (Preservation of Parity Under Sum) If f(x) and g(x) have the same parity, then their sum

f(x) + g(x) has the same parity as both f(x) and g(x).
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(iii.) (Preservation of Parity Under Product) If f(x) and g(x) have the same parity, then their

product f(x)g(x) has the same parity as both f(x) and g(x).

(iv.) (Products of Functions of Opposite Parity) If f(x) and g(x) have opposite parity, then their

product f(x)g(x) is an odd function.

(v.) (Preservation of Parity Under Quotient) If f(x) and g(x) have the same parity, then their

quotient f(x)/g(x) has the same parity as both f(x) and g(x).

(vi.) (Quotients of Functions of Opposite Parity) If f(x) and g(x) have opposite parity, then their

quotient f(x)/g(x) is an odd function.

(vii.) (Preservation of Parity Under Composition) If f(x) and g(x) have the same parity, then their

composite f(g(x)) has the same parity as both f(x) and g(x).

(viii.) (Composition of Functions of Opposite Parity) If f(x) and g(x) have opposite parity, then

their composite f(g(x)) is an even function.

(ix.) (Parity of the Derivative of a Function) If f(x) is differentiable and f(x) has parity, then the

derivative f ′(x) has the opposite parity of f(x).

Proposition 2.5.12 (Definite Integral of an Even Function on a Symmetric Interval). Consider

any even real function f(x) that is integrable on a closed interval [−a, a]. We have that∫ a

−a

f(x) dx = 2

∫ a

0

f(x) dx.

Proof. By the third property of Proposition 2.3.9, it follows that∫ a

−a

f(x) dx =

∫ 0

−a

f(x) dx+

∫ a

0

f(x) dx.

Consider the substitution u = −x with du = −dx. By assumption that f(−x) = f(x), we have that∫ 0

−a

f(x) dx =

∫ 0

−a

f(−x) dx =

∫ 0

a

f(u)(−du) = −
∫ 0

a

f(u) du =

∫ a

0

f(u) du =

∫ a

0

f(x) dx.

Consequently, by the above two displayed equations, the desired identity holds.

Proposition 2.5.13 (Definite Integral of an Odd Function on a Symmetric Interval). Consider

any odd real function f(x) that is integrable on a closed interval [−a, a]. We have that∫ a

−a

f(x) dx = 0.

Proof. By the third property of Proposition 2.3.9, it follows that∫ a

−a

f(x) dx =

∫ 0

−a

f(x) dx+

∫ a

0

f(x) dx.

By assumption that f(−x) = −f(x), the substitution u = −x with du = −dx yields that∫ 0

−a

f(x) dx =

∫ 0

−a

−f(−x) dx =

∫ 0

a

−f(u)(−du) =

∫ 0

a

f(u) du = −
∫ a

0

f(u) du = −
∫ a

0

f(x) dx.

Consequently, by the above two displayed equations, the desired identity holds.



2.6. INTEGRATION BY PARTS 31

2.6 Integration by Parts

We turn our attention next to an analog of the Product Rule for antidifferentiation. We adopt the

shorthand notation u = f(x) and v = g(x) for some differentiable functions f(x) and g(x) so that
du
dx

= f ′(x) and dv
dx

= g′(x) or du = f ′(x) dx and dv = g′(x) dx. By the Product Rule, we have that

d

dx
[uv] =

d

dx
[f(x)g(x)] = f(x)g′(x) + g(x)f ′(x).

Considering that uv is clearly an antiderivative of d
dx
[uv] = f(x)g′(x) + g(x)f ′(x), it follows that

uv =

∫
[f(x)g′(x) + g(x)f ′(x)] dx =

∫
f(x)g′(x) dx+

∫
g(x)f ′(x) dx =

∫
u dv +

∫
v du.

By rearranging, we obtain an analog to the Product Rule for antidifferentiation.

Theorem 2.6.1 (Integration by Parts Formula). Given any differentiable functions u = f(x) and

v = g(x), under the convention that du = f ′(x) dx and dv = g′(x) dx, we have that∫
u dv = uv −

∫
v du.

Colloquially, we refer to this technique as the method of integration by parts because the

rule allows us to identify two parts of the integrand — namely, u and dv — in such a way that

(i.) the antiderivative of u is difficult to determine and its derivative du is simpler;

(ii.) the antiderivative v of dv is readily obtained; and

(iii.) the antiderivative of v du is known or can be found by the method of integration by parts.

Exercise 2.6.2. Use integration by parts to compute the antiderivative of x cos(x).

Exercise 2.6.3. Use integration by parts to compute the antiderivative of ln(x).

Exercise 2.6.4. Use integration by parts to compute the antiderivative of xex.

Once again, the advantage of the method of integration by parts is that it allows us to trade

an expression u dv that is difficult to antidifferentiate for an expression v du whose antiderivative is

known or can be found by integration by parts. Consequently, we may identify families of functions

whose antiderivatives are unknown to us at this time — e.g., logarithmic and inverse trigonometric

functions — and use these as candidates for u. On the other hand, we may identify functions whose

antiderivatives are easily found — e.g., algebraic, trigonometric, and exponential functions — and

use these as candidates for dv. Ultimately, this gives rise to the following acronym.

Logarithmic Inverse TrigonometricAlgebraicTrigonometricExponential

Essentially, this acronym is intended to help us remember how to prioritize the assignments of u

and dv to our integrand: if the function is further left on the list, then it should be made u; if the

function is further right on the list, it should be made dv. Consequently, we have the following.
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Algorithm 2.6.5 (Using LIATE). Given any pair of functions f(x) and g(x) such that

(a.) f(x) is a logarithmic, inverse trigonometric, or algebraic function and

(b.) g(x) is an algebraic, trigonometric, or exponential function,

in order to compute
∫
f(x)g(x) dx, we may assign u = f(x) and dv = g(x) dx.

Exercise 2.6.6. Use integration by parts once to compute the antiderivative of x3 ln(x).

Exercise 2.6.7. Use integration by parts twice to compute the antiderivative of x2 sin(x).

Exercise 2.6.8. Use integration by parts three times to compute the antiderivative of x3ex.

Exercise 2.6.9. Explain the difficulty in using integration by parts with u = x3 and dv = ex
2
dx

to compute the antiderivative of x3ex
2
. Group the terms differently, and try again successfully.

Observe that in two of the above examples, we were required to use integration by parts multiple

times in order to find the antiderivatives of the given functions. Generally, if we wish to evaluate

the antiderivative of the product of a function f(x) and a polynomial p(x) = anx
n + · · ·+ a1x+ a0,

we may use a shorthand version of integration by parts known as the tabular method.

Theorem 2.6.10 (Tabular Method for Integration). Given any function f(x) whose antiderivatives

are known and any polynomial p(x) = anx
n + · · ·+ a1x+ a0 with nonzero an, we have that∫

p(x)f(x) dx =
n∑

k=0

(−1)kp(k)(x)Ik+1f(x),

where p(k)(x) denotes the kth derivative of p(x) and Ikf(x) denotes the k-fold antiderivative of f(x).

Proof. Observe that the nth derivative of p(x) is given by p(n)(x) = ann! so that p(n+1)(x) = 0. By

the method of Integration by Parts Formula with u = p(x) and dv = f(x) dx, we have that∫
p(x)f(x) dx = p(x)F (x)−

∫
p′(x)F (x) dx

for some real function F (x) such that d
dx
F (x) = f(x). By hypothesis, the antiderivative of F (x) is

known, hence we may use integration by parts with u = p′(x) and dv = F (x) dx to find that∫
p′(x)F (x) dx = p′(x)I2f(x)−

∫
p′′(x)I2f(x) dx,

where I2f(x) denotes the antiderivative of F (x), i.e., d
dx
I2f(x) = F (x) so that d2

dx2 I
2f(x) = f(x).

Combined with the above displayed equation, we have that∫
p(x)f(x) dx = p(x)F (x)−

(
p′(x)I2f(x)−

∫
p′′(x)I2f(x) dx

)

= p(x)F (x)− p′(x)I2f(x) +

∫
p′′(x)I2f(x) dx.
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Using integration by parts once again with u = p′′(x) and dv = I2f(x) dx, we have that∫
p′′(x)I2f(x) dx = p′′(x)I3f(x)−

∫
p′′′(x)I3f(x) dx.

Combined with the above displayed equation, we find that∫
p(x)f(x) dx = p(x)F (x)− p′(x)I2f(x) + p′′(x)I3f(x)−

∫
p′′′(x)I3f(x) dx.

Continue in this manner until u = p(n)(x). By our opening remarks, we have that du = p(n+1)(x) = 0

so that
∫
v du = 0. Observing the pattern and using F (x) =

∫
f(x) dx = I1f(x), we are done.

Graphically, we can quite simply implement the tabular method by writing out a table with four

columns: the first column consists of the index k; the second column consists of the sign (−1)k; the

third column consists of the consecutive derivatives of p(x) up to and including 0; and the fourth

column consists of the consecutive antiderivatives Ik+1f(x) of f(x). Once we have these, the tabular

method guarantees that
∫
p(x)f(x) dx can be found by adding the consecutive products of the kth

row of the second and third columns by the (k + 1)th row of the fourth column.

Example 2.6.11. We will illustrate the tabular method to compute the antiderivative of x2 sin(x)

as in Example 2.6.7. Construct the following table with p(x) = x2 and f(x) = sin(x).

k (−1)k p(k)(x) Ik+1f(x)

0 + x2 sin(x)

1 − 2x − cos(x)

2 + 2 − sin(x)

3 − 0 cos(x)

Consequently, we find that
∫
x2 sin(x) dx = x2(− cos(x))− 2x(− sin(x)) + 2 cos(x), as desired.

Exercise 2.6.12. Use the tabular method to verify your solution to Example 2.6.8.

Exercise 2.6.13. Use the tabular method to compute the antiderivative of x10(2x+ 1)4.

2.7 Trigonometric Integrals

Given positive integers (or whole numbers) m and n, we refer to an integral of the form∫
sinm(x) cosn(x) dx

as a trigonometric integral: indeed, the integrand is a product of powers of basic trigonometric

functions. Quickly, one can glean that u-substitution fails, and integration by parts is hopelessly

complicated. Using basic trigonometry, however, we are able to evaluate these integrals by convert-

ing them to a form in which we can use the tried-and-true methods of yore. Given a right triangle

with hypotenuse of length h > 0, base of length a, and height of length o, the Pythagorean Theorem

states that o2 + a2 = h2. By dividing each term in this equation by h, we have that o2

h2 + a2

h2 = 1.
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Using x to represent the angle whose opposite side has length o and whose adjacent side has length

a, the Pythagorean Theorem yields the so-called Pythagorean Identity

sin2(x) + cos2(x) = 1.

Consequently, we may convert any even power of cos(x) into a power of 1− sin2(x) (and vice-versa).

Considering that d
dx

sin(x) = cos(x) and d
dx

cos(x) = − sin(x), we have the following stratagem.

Strategy 2.7.1 (Trigonometric Integration, Case I). Consider the case that either m or n is odd.

(a.) Given that m is odd, we may write m = 2k + 1 for some positive integer k so that∫
sinm(x) cosn(x) dx =

∫
sin2k+1(x) cosn(x) dx =

∫
[sin2(x)]k cosn(x)(sin(x) dx).

Considering that sin2(x) = 1−cos2(x) and d
dx

cos(x) = − sin(x), letting u = cos(x) yields that∫
sinm(x) cosn(x) dx = −

∫
(1− u2)kun du.

Expanding the polynomial (1−u2)k and using the Power Rule, we can find the antiderivative.

(b.) Given that n is odd, we may write n = 2ℓ+ 1 for some positive integer ℓ so that∫
sinm(x) cosn(x) dx =

∫
sinm(x) cos2ℓ+1(x) dx =

∫
sinm(x)(cos2(x))ℓ(cos(x) dx).

Considering that cos2(x) = 1− sin2(x) and d
dx

sin(x) = cos(x), letting v = sin(x) yields that∫
sinm(x) cosn(x) dx =

∫
vm(1− v2)ℓ dv.

Expanding the polynomial (1− v2)ℓ and using the Power Rule, we can find the antiderivative.

Example 2.7.2. Compute the indefinite integral of sin3(x) cos2(x).

Solution. Observe that sin3(x) cos2(x) dx = sin2(x) cos2(x)(sin(x) dx). By the Pythagorean Identity,

we have that sin2(x) = 1− cos2(x), from which it follows that

sin3(x) cos2(x) dx = (1− cos2(x)) cos2(x)(sin(x) dx).

Using the substitution u = cos(x), we have that du = − sin(x) dx so that

sin3(x) cos2(x) dx = (1− u2)u2(−du) = (u2 − 1)u2 du = (u4 − u2) du.

Consequently, we find that∫
sin3(x) cos2(x) dx =

∫
(u4 − u2) du =

1

5
u5 − 1

3
u3 + C =

1

5
cos5(x)− 1

3
cos3(x) + C. ⋄

Exercise 2.7.3. Compute the indefinite integral of sin5(x).
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Unfortunately, this method fails in the case that both m and n are even. Consider the trigono-

metric integral of sin2(x) cos2(x). By setting u = sin(x), we find that du = cos(x) dx so that

sin2(x) cos2(x) dx = u2 cos(x) du.

But the lingering factor of cos(x) obstructs our efforts to take the indefinite integral. Likewise, a

similar obstruction appears if we attempt to let u = cos(x). Luckily, we have more trigonometric

tools at our disposal. Recall the following angle addition formulas.

sin(x+ y) = sin(x) cos(y) + sin(y) cos(x)

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y).

Using these, we can derive the double-angle formulas by plugging in x = y.

sin(2x) = 2 sin(x) cos(x)

cos(2x) = cos2(x)− sin2(x)

Considering that sin2(x) + cos2(x) = 1, we may simplify these identities as follows.

cos(2x) = cos2(x)− sin2(x) = [1− sin2(x)]− sin2(x) = 1− 2 sin2(x)

cos(2x) = cos2(x)− sin2(x) = cos2(x)− (1− cos2(x)) = 2 cos2(x)− 1

By solving for sin2(x) and cos2(x) above, we obtain the power-reduction formulas.

sin2(x) =
1− cos(2x)

2
cos2(x) =

1 + cos(2x)

2

One way to memorize the distinction is to “remember your sign” when using sine. Or as my former

student Ronald Heminway so eloquently put it, we may use the mnemonic device “sinus minus.”

Strategy 2.7.4 (Trigonometric Integration, Case II). Consider the case that neither of the integers

m and n is odd. Put another way, consider the case that both of the integers m and n are even.

(a.) Given that m = n = 2k for some positive integer k, we have that∫
sinm(x) cosn(x) dx =

∫
sin2k(x) cos2k(x) dx =

∫
[sin(x) cos(x)]2k dx.

Using the double-angle formula sin(2x) = 2 sin(x) cos(x), we have that

[sin(x) cos(x)]2k =

[
sin(2x)

2

]2k
=

[sin2(2x)]k

4k
.

Using the power-reduction formula sin2(2x) = 1
2
[1 − cos(4x)], we can then obtain a poly-

nomial in cos(4x). Continue using the power-reduction formula for cosine to obtain a linear

combination of cos(4x), cos(8x), cos(16x), etc. Each of these has an elementary antiderivative.

(b.) Given that m = 2i and n = 2j for some distinct positive integers i and j, use the power-

reduction formulas repeatedly to express sin2i(x) cos2j(x) = [sin2(x)]i[cos2(x)]j as a linear

combination of cos(2x), cos(4x), cos(8x), etc. Each of these has an elementary antiderivative.
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Example 2.7.5. Compute the indefinite integral of sin2(x) cos2(x).

Solution. By the double-angle formula, we have that

sin2(x) cos2(x) dx = [sin(x) cos(x)]2 dx =

(
1

2
sin(2x)

)2
dx =

1

4
sin2(2x) dx.

Using the power-reduction formula, we find that

sin2(x) cos2(x) dx =
1

4
sin2(2x) dx =

1

4
· 1
2
[1− cos(4x)] dx

has an elementary antiderivative. Consequently, we conclude that∫
sin2(x) cos2(x) dx =

1

8

∫
[1− cos(4x)] dx =

1

8

[
x− 1

4
sin(4x)

]
+ C. ⋄

Exercise 2.7.6. Compute the indefinite integral of cos4(x).

Using the Pythagorean Identity sin2(x) + cos2(x) = 1, we can obtain another identity

tan2(x) + 1 = sec2(x)

by dividing each term by cos2(x) and recalling that tan(x) = sin(x)
cos(x)

and sec(x) = 1
cos(x)

. Consequently,

we can adapt our stratagem from Trigonometric Integration, Case I to evaluate integrals of the form∫
tanm(x) secn(x) dx.

Crucially, toward achieving this end, we must observe the following facts.

1.) By the Quotient Rule, we have that

d

dx
tan(x) =

d

dx

[
sin(x)

cos(x)

]
=

cos2(x)− (− sin(x))(sin(x))

cos2(x)
=

sin2(x) + cos2(x)

cos2(x)
= sec2(x).

2.) By the Chain Rule, we have that

d

dx
sec(x) =

d

dx
[cos(x)]−1 = −[cos(x)]−2[− sin(x)] =

sin(x)

cos2(x)
= sec(x) tan(x).

3.) Using the substitution u = cos(x) with du = − sin(x) dx, we have that∫
tan(x) dx =

∫
sin(x)

cos(x)
dx =

∫
−du

u
= − ln|u|+ C = − ln|cos(x)|+ C = ln|sec(x)|+ C.

4.) Using the substitution u = sec(x) + tan(x) with du = [sec(x) tan(x) + sec2(x)] dx, we have∫
sec(x)[sec(x) + tan(x)]

sec(x) + tan(x)
dx =

∫
sec2(x) + sec(x) tan(x)

tan(x) + sec(x)
dx = ln|sec(x) + tan(x)|+ C.
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Strategy 2.7.7 (Trigonometric Integration, Case III). Consider the case that n ≥ 2 is an even

integer. Explicitly, assume that n = 2k for some positive integer k, from which it follows that∫
tanm(x) secn(x) dx =

∫
tanm(x) sec2k(x) dx =

∫
tanm(x)[sec2(x)]k−1(sec2(x) dx).

Considering that sec2(x) = 1 + tan2(x) and d
dx

tan(x) = sec2(x), letting u = tan(x) yields that∫
tanm(x) secn(x) dx =

∫
tanm(x)(1 + tan2(x))k−1(sec2(x) dx) =

∫
um(1 + u2)k−1 du.

Expanding the polynomial (1 + u2)k−1 and using the Power Rule, we can compute the integral.

Exercise 2.7.8. Compute the indefinite integral of tan2(x) sec2(x).

Exercise 2.7.9. Compute the indefinite integral of tan5(x) sec4(x).

Strategy 2.7.10 (Trigonometric Integration, Case IV). Consider the case that m ≥ 1 is odd and

n ≥ 1. Explicitly, assume that m = 2ℓ+ 1 for some positive integer ℓ, from which it follows that∫
tanm(x) secn(x) dx =

∫
tan2ℓ+1(x) secn(x) dx =

∫
[tan2(x)]ℓ secn−1(x)(sec(x) tan(x) dx).

Considering that tan2(x) = sec2(x)− 1 and d
dx

sec(x) = sec(x) tan(x), letting v = sec(x) yields that∫
tanm(x) secn(x) dx =

∫
[sec2(x)− 1]ℓ secn−1(x)(sec(x) tan(x) dx) =

∫
(v2 − 1)ℓvn−1 dv.

Expanding the polynomial (v2 − 1)ℓ−1 and using the Power Rule, we can compute the integral.

Exercise 2.7.11. Compute the indefinite integral of tan(x) sec2(x).

Exercise 2.7.12. Compute the indefinite integral of tan3(x) sec3(x).

Unfortunately, it is difficult to compute the indefinite integral of the function tanm(x) secn(x)

when m ≥ 2 is an even integer and n ≥ 1 is an odd integer; however, in this case, it is possible to

use integration by parts and the Pythagorean Identity to transform the integrand into one that falls

into either Trigonometric Integration, Case III or Trigonometric Integration, Case IV as follows.

Example 2.7.13. Consider the trigonometric function tan2(x) sec(x). Observe that if u = tan(x)

and dv = sec(x) tan(x) dx, then by the method of Integration by Parts Formula, we have that∫
tan2(x) sec(x) dx = sec(x) tan(x)−

∫
sec3(x) dx.

We are now in a position to compute the indefinite integral by evaluating the indefinite integral of

sec3(x). By the Pythagorean Identity 1 + tan2(x) = sec2(x), we have that∫
sec3(x) dx =

∫
sec(x)[tan2(x) + 1] dx =

∫
tan2(x) sec(x) dx+

∫
sec(x) dx.

By plugging this back into our above displayed equation and rearranging, it follows that∫
tan2(x) sec(x) =

1

2

[
sec(x) tan(x)−

∫
sec(x) dx

]
=

1

2
sec(x) tan(x)− 1

2
ln|sec(x) + tan(x)|+ C.
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2.8 Trigonometric Substitution

Beyond their extensive applications in geometry and physics, the trigonometric functions yield a

very powerful substitution method for integration. Consider the following right triangle.

bxa

θ

By the Pythagorean Theorem, the side adjacent to the interior angle θ has length
√
a2 − b2x2 so

that a cos(θ) =
√
a2 − b2x2. Observe that bx = a sin(θ) so that b dx = a cos(θ) dθ, and we have that∫ √

a2 − b2x2 dx =

∫
a cos(θ)

(a
b
cos(θ) dθ

)

=
a2

b

∫
cos2(θ) dθ

=
a2

2b

∫
[1 + cos(2θ)] dθ (power-reduction formula)

=
a2

2b

[
θ +

1

2
sin(2θ)

]
+ C

=
a2

2b
[θ + sin(θ) cos(θ)] + C (double-angle formula)

=
a2

2b

[
arcsin

(
bx

a

)
+

bx

a2

√
a2 − b2x2

]
+ C,

where the last equality comes from the substitution bx = sin(θ) and the above triangle.

Strategy 2.8.1 (Trigonometric Substitution, Case I). Given a function f(x) that can be written

as g(x)
√
a2 − b2x2 for some nonzero real numbers a and b and some function g(x), we may attempt

to compute
∫
f(x) dx by making the substitution bx = a sin(θ) so that b dx = a cos(θ) dθ.

Example 2.8.2. Use a trigonometric substitution to compute the indefinite integral of x2
√
1− x2.

Solution. Considering that this function has a factor of
√
1− x2, we may make the trigonometric

substitution x = sin(θ) so that dx = cos(θ) dθ. Observe that x2 = sin2(θ) so that by the Pythagorean

Identity, we have that
√
1− x2 =

√
1− sin2(θ) =

√
cos2(θ) = cos(θ). Consequently, we find that∫

x2
√
1− x2 dx =

∫
sin2(θ) cos(θ)(cos(θ) dθ) =

∫
sin2(θ) cos2(θ) dθ.



2.8. TRIGONOMETRIC SUBSTITUTION 39

By Example 2.7.5 above and the double-angle formulas, we have that

∫
sin2(θ) cos2(θ) dθ =

1

8

[
θ − 1

4
sin(4θ)

]
+ C

=
1

8

[
θ − 1

2
sin(2θ) cos(2θ)

]
+ C

=
1

8
(θ − sin(θ) cos(θ)[cos2(θ)− sin2(θ)]) + C

=
1

8
[θ − sin(θ) cos3(θ) + sin3(θ) cos(θ)] + C.

Using the substitution x = sin(θ) and the fact that
√
1− x2 = cos(θ), we conclude that

∫
x2
√
1− x2 dx =

1

8

[
arcsin(x)− x(1− x2)3/2 + x3

√
1− x2

]
+ C. ⋄

Exercise 2.8.3. Use a trigonometric substitution to compute the indefinite integral of x√
1−x2 .

Exercise 2.8.4. Use a trigonometric substitution to compute the indefinite integral of x5
√
1− 9x2.

Exercise 2.8.5. Use a trigonometric substitution to compute the indefinite integral of x2
√
9−x2 .

Certainly, it is possible to consider other possibilities for our initial right triangle. Explicitly,

suppose that the altitude and base of a right triangle are given as follows.

a

bx

θ

By the Pythagorean Theorem, the hypotenuse of the above right triangle has length
√
a2 + b2x2.
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Observe that bx = a tan(θ) so that b dx = a sec2(θ) dθ. Consequently, we have that∫
dx√

a2 + b2x2
=

∫ a
b
sec2(θ) dθ√

a2 + a2 tan2(θ)

=
a

b

∫
sec2(θ) dθ√

a2(1 + tan2(θ))

=
a

b

∫
sec2(θ) dθ√
a2 sec2(θ)

(Pythagorean Identity)

=
1

b

∫
sec(θ) dθ (a > 0 and sec(θ) > 0)

=
1

b
ln|sec(θ) + tan(θ)|+ C

=
1

b
ln

∣∣∣∣∣
√
a2 + b2x2 + bx

a

∣∣∣∣∣+ C,

where the last equality comes from the substitution bx = a tan(θ) and the above triangle.

Strategy 2.8.6 (Trigonometric Substitution, Case II). Given a function f(x) that can be written

as g(x)
√
a2 + b2x2 for some nonzero real numbers a and b and some function g(x), we may attempt

to compute
∫
f(x) dx by making the substitution bx = a tan(θ) so that b dx = a sec2(θ) dθ.

Example 2.8.7. Use a trigonometric substitution to compute the indefinite integral of x3
√
1 + x2.

Solution. Considering that this function has a factor of
√
1 + x2, we may make the trigonometric

substitution x = tan(θ) with dx = sec2(θ) dθ. Observe that x2 = tan2(θ) so that by the Pythagorean

Identity, we have that
√
1 + x2 =

√
1 + tan2(θ) =

√
sec2(θ) = sec(θ). Consequently, we find that∫

x3
√
1 + x2 dx =

∫
tan3(θ) sec(θ)(sec2(θ) dθ) =

∫
tan3(θ) sec3(θ) dθ.

We are now in a position to evaluate a trigonometric integral. By the technique outlined in Trigono-

metric Integration, Case IV, we may borrow a factor of tan(θ) and a factor of sec(θ) and use the

Pythagorean Identity tan2(θ) = sec2(θ)− 1 to simplify the integrand tan3(θ) sec3(θ) dθ as follows.∫
tan3(θ) sec3(θ) dθ =

∫
(sec2(θ)− 1) sec2(θ)(sec(θ) tan(θ) dθ)

We now employ the substitution u = sec(θ) with du = sec(θ) tan(θ) dθ to obtain the following.∫
(sec2(θ)− 1) sec2(θ)(sec(θ) tan(θ) dθ) =

∫
(u2 − 1)u2 du =

∫
(u4 − u2) du =

1

5
u5 − 1

3
u3 + C.



2.8. TRIGONOMETRIC SUBSTITUTION 41

Considering that u = sec(θ) =
√
1 + x2, it follows that∫

x3
√
1 + x2 dx =

1

5
(1 + x2)5/2 − 1

3
(1 + x2)3/2 + C. ⋄

Exercise 2.8.8. Use a trigonometric substitution to compute the indefinite integral of (x2+1)−3/2.

Exercise 2.8.9. Use a trigonometric substitution to compute the indefinite integral of x2(x2+9)3/2.

Exercise 2.8.10. Use a trigonometric substitution to compute the indefinite integral of x5
√
4 + x2.

Last, consider the following right triangle in which the base and hypotenuse are given.

a

bx

θ

By the Pythagorean Theorem, the side opposite the interior angle θ has length
√
b2x2 − a2. Observe

that bx = a sec(θ) so that b dx = a sec(θ) tan(θ) dθ. Consequently, we have that∫
dx

b2x2 − a2
=

∫ a
b
sec(θ) tan(θ) dθ

a2 tan2(θ)

=
1

ab

∫
sec(θ) dθ

tan(θ)

=
1

ab

∫
csc(θ) dθ

= − 1

ab
ln|csc(θ) + cot(θ)|+ C

= − 1

ab
ln

∣∣∣∣ bx+ a√
b2x2 − a2

∣∣∣∣+ C,

where the last equality comes from the substitution bx = a sec(θ) and the above triangle.

Strategy 2.8.11 (Trigonometric Substitution, Case III). Given a function f(x) that can be written

as g(x)
√
b2x2 − a2 for some nonzero real numbers a and b and some function g(x), we may attempt

to compute
∫
f(x) dx via the substitution bx = a sec(θ) so that b dx = a sec(θ) tan(θ) dθ.

Example 2.8.12. Use a trigonometric substitution to compute the indefinite integral of x3
√
x2 − 1.
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Solution. Considering that this function has a factor of
√
x2 − 1, we may make the substitution

x = sec(θ) so that dx = sec(θ) tan(θ) dθ. Observe that x2 = sec2(θ) so that by the Pythagorean

Identity, we have that
√
x2 − 1 =

√
sec2(θ)− 1 =

√
tan2(θ) = tan(θ). Consequently, we find that∫

x3
√
x2 − 1 dx =

∫
sec3(θ) tan(θ)(sec(θ) tan(θ) dθ) =

∫
tan2(θ) sec4(θ) dθ.

Observe that we may use the substitution u = tan(θ) with du = sec2(θ) dθ to obtain∫
tan2(θ) sec4(θ) dθ =

∫
tan2(θ) sec2(θ)(sec2(θ) dθ)

=

∫
tan2(θ)(1 + tan2(θ))(sec2(θ) dθ) (Pythagorean Identity)

=

∫
u2(1 + u2) du

=

∫
(u2 + u4) du

=
1

3
u3 +

1

5
u5 + C.

Considering that u = tan(θ) =
√
x2 − 1, it follows that∫

x3
√
x2 − 1 dx =

1

3
(x2 − 1)3/2 +

1

5
(x2 − 1)5/2 + C. ⋄

Exercise 2.8.13. Use a trigonometric substitution to compute
∫
(x2 − 4)−3/2 dx.

Exercise 2.8.14. Use a trigonometric substitution to compute
∫ √

4x2 − 9 dx.

Exercise 2.8.15. Use a trigonometric substitution to compute
∫
x5
√
x2 − 16 dx.

2.9 Partial Fraction Decomposition

We have thus far discussed several satisfactory techniques for integrating power functions, algebraic

functions, exponential functions, logarithmic functions, trigonometric functions, and their products;

however, we have not yet uniformly dealt with the problem of integrating rational functions. By

definition, a rational function is a quotient of two polynomial expressions, e.g., the rational functions

1

x2 + 2x
and

x− 2

x− 5
and

x3 − 1

x2 + 1
.

We say that a rational function is proper if and only if the degree of the polynomial in the numerator

is less than the degree of the polynomial in the denominator. Of the displayed rational functions
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above, only the first is a proper rational function. By performing polynomial long division, we

may convert any improper rational function into a linear combination of proper rational functions.

Explicitly, we have that x− 2 = (x− 5) + 3 so that dividing each side by x− 5 yields that

x− 2

x− 5
= 1 +

3

x− 2
.

We may subsequently compute the antiderivative of this rational function by elementary methods.∫
x− 2

x− 5
dx =

∫ (
1 +

3

x− 2

)
dx =

∫
1 dx+

∫
3

x− 2
dx = x+ 3 ln|x− 2|+ C

Likewise, by polynomial long division, we find that x3−1 = x(x2+1)− (x+1) so that the improper

rational function can be written as the following linear combination of proper rational functions.

x3 − 1

x2 + 1
= x− x+ 1

x2 + 1
= x− x

x2 + 1
− 1

x2 + 1

Once again, the antiderivative of this rational function can be found with relative ease.∫
x3 − 1

x2 + 1
dx =

∫
x dx−

∫
x

x2 + 1
dx− 1

x2 + 1
dx =

1

2
x2 − 1

2
ln(x2 + 1)− arctan(x) + C

Unfortunately, the antiderivative of the proper rational function (x2+2x)−1 cannot be obtained by

any technique we have discussed so far; however, it is possible to integrate this function by noticing

(quite cleverly) that it can be written as a difference of proper rational functions as follows.∫
1

x2 + 2x
dx =

∫ (
1

2x
− 1

2(x+ 2)

)
dx =

1

2

∫
1

x
dx− 1

2

∫
1

x+ 2
dx =

1

2
(ln|x| − ln|x+ 2|) + C

Essentially, the content of this observation is the method of partial fraction decomposition.

Before we delve into the method of partial fraction decomposition, we must continue to recall

some important notions from college algebra. We say that a polynomial is irreducible if it cannot be

written as a product of two polynomials of strictly lesser degree. Consequently, a linear polynomial

ax+ b is irreducible; it can be shown that a quadratic polynomial is irreducible if and only if it has

no roots. By the Quadratic Equation, the roots of a real quadratic polynomial ax2 + bx+ c are

x =
−b±

√
b2 − 4ac

2a

so that ax2+bx+c is irreducible if and only if b2−4ac < 0.We refer to the real number b2−4ac as the

discriminant of the quadratic: if this quantity is negative, the quadratic has only imaginary roots.

One of the most useful (and nontrivial) facts about real polynomials is that the only irreducible

polynomials with real coefficients are linear or quadratic. Put another way, it turns out that every

real polynomial factors as a product of linear and irreducible quadratic polynomials.

Theorem 2.9.1 (Partial Fraction Decomposition Theorem).

(a.) (Distinct Linear Factors) Given any real numbers a, b, c, and d such that a and c are nonzero

and ax+ b and cx+ d are distinct, there exist nonzero real numbers A and B such that

1

(ax+ b)(cx+ d)
=

A

ax+ b
+

B

cx+ d
.
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(b.) (Powers of Distinct Linear Factors) Given any real numbers a, b, c, and d such that a and c

are nonzero and ax+b and cx+d are distinct and any pair of positive integers m and n, there

exist real numbers A1, A2, . . . , Am and B1, B2, . . . , Bn not all of which are zero such that

1

(ax+ b)m(cx+ d)n
=

m∑
i=1

Ai

(ax+ b)i
+

n∑
j=1

Bj

(cx+ d)j
.

(c.) (Linear and Irreducible Quadratic Factors) Given any real numbers a, b, c, d, and e such that

a and c are nonzero and d2 − 4ce < 0, there exist real numbers A,B,C not all zero such that

1

(ax+ b)(cx2 + dx+ e)
=

A

ax+ b
+

Bx+ C

cx2 + dx+ e
.

(d.) (Distinct Irreducible Quadratic Factors) Given any real numbers a, b, c, d, e, and f such that

a and d are nonzero, ax2+bx+c and dx2+ex+f are distinct, b2−4ac < 0, and e2−4df < 0,

there exist real numbers A,B,C, and D not all of which are zero such that

1

(ax2 + bx+ c)(dx2 + ex+ f)
=

Ax+B

ax2 + bx+ c
+

Cx+D

dx2 + ex+ f
.

(e.) (Powers of Distinct Irreducible Quadratic Factors) Given any pair of positive integers m and

n and any real numbers a, b, c, d, e, and f such that a and d are nonzero, b2 − 4ac < 0,

e2 − 4df < 0, and ax2 + bx + c and dx2 + ex + f are distinct, there exist real numbers

A1, . . . , Am, B1, . . . , Bm, C1, . . . , Cn, and D1, D2, . . . , Dn not all of which are zero such that

1

(ax2 + bx+ c)m(dx2 + ex+ f)n
=

m∑
i=1

Aix+Bi

(ax2 + bx+ c)i
+

n∑
j=1

Cjx+Dj

(dx2 + ex+ f)j
.

Even more, these are all of the possible cases of proper rational functions with numerator 1.

Example 2.9.2. Use the Partial Fraction Decomposition Theorem to compute

∫
1

x2 − 5x− 6
dx.

Solution. Observe that x2 − 5x− 6 = (x− 6)(x + 1) is a factorization of x2 − 5x− 6 into distinct

linear factors, hence the method of partial fraction decomposition yields that

1

x2 − 5x− 6
=

A

x− 6
+

B

x+ 1
.

Clearing denominators and using the fact that (x− 6)(x+ 1) = x2 − 5x− 6, we find that

1 = A(x+ 1) +B(x− 6).

By setting x = 6, we find that 1 = 7A so that A = 1
7
. By setting x = −1, we find that 1 = −7B so

that B = −1
7
. Consequently, the method of partial fraction decomposition reveals that

1

x2 − 5x− 6
=

1
7

x− 6
+

−1
7

x+ 1
.

We may therefore return to compute our indefinite integral with elementary techniques.∫
1

x2 − 5x− 6
dx =

1

7

∫
1

x− 6
dx− 1

7

∫
1

x+ 1
dx =

1

7
ln|x− 6| − 1

7
ln|x+ 1|+ C. ⋄
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Example 2.9.3. Use the method of partial fraction decomposition to compute
∫
(x4 − 1)−1 dx.

Solution. Observe that x4− 1 = (x2− 1)(x2+1) = (x− 1)(x+1)(x2+1) is a factorization of x4− 1

into distinct linear and quadratic factors. Considering that 0 − 4(1)(1) = −4 < 0, it follows that

x2 + 1 is irreducible. Using the method of partial fraction decomposition, it follows that

1

x4 − 1
=

A

x− 1
+

B

x+ 1
+

Cx+D

x2 + 1
.

Clearing denominators and using the fact that (x− 1)(x+ 1) = x2 − 1, we find that

1 = A(x+ 1)(x2 + 1) +B(x− 1)(x2 + 1) + (Cx+D)(x2 − 1).

Considering that this identity holds for all x, it follows that 4A = 1 by plugging in x = 1, −4B = 1

by plugging in x = −1, and A−B −D = 1 by plugging in x = 0. We find immediately that

A =
1

4
, B = −1

4
, and D = A−B − 1 =

1

2
− 1 = −1

2
.

Expanding the polynomial on the right in the second-to-last displayed equation, we find that

0x3 + 1 = 1 = (A+B + C)x3 + some polynomial of degree at most two.

Comparing coefficients gives that A+B + C = 0 so that C = 0. We conclude that

1

x4 − 1
=

1
4

x− 1
−

1
4

x+ 1
−

1
2

x2 + 1
,

from which it follows that∫
1

x4 + 1
dx =

1

4

∫
1

x− 1
dx− 1

4

∫
1

x+ 1
− 1

2

∫
1

x2 + 1
dx

=
1

4
ln|x− 1| − 1

4
ln|x+ 1| − 1

2
arctan(x) + C. ⋄

Caution: it is not necessarily always possible to eliminate variables by plugging in carefully chosen

values x = a when implementing the method of partial fraction decomposition. Ultimately, it is in

fact best to use the method of undetermined coefficients, as outlined in our next example.

Example 2.9.4. Use the Partial Fraction Decomposition Theorem to compute

∫
2x+ 1

x4 + 2x2 + 1
dx.

Solution. Observe that x4+4x2+3 = (x2+1)(x2+3) is a factorization of x4+4x2+3 into distinct

irreducible factors. Using the method of partial fraction decomposition, we have that

2x+ 1

(x2 + 1)(x2 + 3)
=

Ax+B

x2 + 1
+

Cx+D

x2 + 3
.

Clearing denominators, we find that

2x+ 1 = (Ax+B)(x2 + 3) + (Cx+D)(x2 + 1).
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Considering that x2 + 1 and x2 + 3 are irreducible, we cannot eliminate either of these quadratic

factors by substituting x = a for any real number a. Consequently, we must compare coefficients.

Expanding the right-hand side in the second-to-last displayed equation, we find that

2x+ 1 = (A+ C)x3 + (B +D)x2 + (3A+ C)x+ 3B +D,

from which we obtain the following linear system of equations.

A+ C = 0 3A+ C = 2

B +D = 0 3B +D = 1

We have therefore that A = −C and B = −D so that 2 = −3C + C = −2C and 1 = −3D +D =

−2D. We conclude that A = 1, B = 1
2
, C = −1, and D = −1

2
, from which it follows that∫

2x+ 1

x4 + 4x2 + 3
dx =

∫ (
x+ 1

2

x2 + 1
−

x+ 1
2

x2 + 3

)
dx

=
1

2

∫
2x+ 1

x2 + 1
dx− 1

2

∫
2x+ 1

x2 + 3
dx

=
1

2

∫
2x

x2 + 1
dx+

1

2

∫
1

x2 + 1
dx− 1

2

∫
2x

x2 + 3
dx− 1

2

∫
1

x2 + 3
dx

=
1

2
ln|x2 + 1|+ 1

2
arctan(x)− 1

2
ln|x2 + 3| − 1

2
√
3
arctan

(
x√
3

)
+ C,

where the last integral is determined by x2 + 3 = 3

[(
x√
3

)2
+ 1

]
and the substitution u = x√

3
. ⋄

Example 2.9.5. Use the Partial Fraction Decomposition Theorem to compute

∫
1

x2 − 1
dx.

Exercise 2.9.6. Use the method of partial fraction decomposition to compute

∫
2x+ 3

x3 − 2x2 + 4x− 8
dx.

Observe that the method of partial fraction decomposition applies to proper rational functions;

however, by polynomial long division, every rational function induces a proper rational function.

Example 2.9.7. Use polynomial long division to express the following rational function as the sum

of a polynomial and a proper rational function; then, compute its indefinite integrals.

f(x) =
x3 + 1

x2 + x+ 1

Solution. We proceed by polynomial long division. Our task is to sequentially eliminate the largest

power of x in each polynomial that appears as the dividend in the long division.

1.) Our dividend is x3 + 1, and our divisor is x2 + x+ 1. Observe that

(x3 + 1)− x(x2 + x+ 1) = (x3 + 1)− (x3 + x2 + x) = −x2 − x+ 1.
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2.) Our dividend is now −x2 − x+ 1, and our divisor is x2 + x+ 1. Observe that

(−x2 − x+ 1)− (−1)(x2 + x+ 1) = (−x2 − x+ 1) + (x2 + x+ 1) = 2.

3.) Our dividend of 2 has lesser degree than x2 + x+ 1, so the division terminates.

x− 1

x2 + x+ 1 x3 + 1

− x3 − x2 − x

− x2 − x + 1

x2 + x + 1

2

Ultimately, we find that x3 + 1 = (x− 1)(x2 + x+ 1) + 2 so that

x3 + 1

x2 + x+ 1
= x− 1 +

2

x2 + x+ 1
.

Considering that 12 − 4(1)(1) = −3 < 0, it follows that x2 + x + 1 is an irreducible quadratic

polynomial, hence the method of partial fraction decomposition fails to improve the situation here;

rather, we may revert to the method of completing the square to find that

x2 + x+ 1 = x2 + x+

(
1

2

)2
−
(
1

2

)2
+ 1 =

(
x+

1

2

)2
+

3

4
.

By setting u = x+ 1
2
, we find that du = dx so that∫

2

x2 + x+ 1
dx = 2

∫
1(

x+ 1
2

)2
+ 3

4

dx = 2

∫
1

u2 + 3
4

du =
8

3

∫
1(

2√
3
u
)2

+ 1
du.

One can perform a substitution t = 2√
3
u with dt = 2√

3
du or simply recognize this integral as

8

3

∫
1(

2√
3
u
)2

+ 1
du =

4√
3
arctan

(
2√
3
u

)
+ C =

4√
3
arctan

(
2x+ 1√

3

)
+ C.

Ultimately, we conclude that the function has the following general antiderivative.∫
x3 + 1

x2 + x+ 1
dx =

∫ (
x− 1 +

2

x2 + x+ 1

)
dx =

1

2
x2 − x+

4√
3
arctan

(
2x+ 1√

3

)
+ C ⋄

Example 2.9.8. Use polynomial long division to express the following rational functions as the

sum of a polynomial and a proper rational function; then, compute their indefinite integrals.

(a.)
x3 + 1

x2 + x+ 1
(b.)

x4 − x2 + 1

x2 − 1
(c.)

x5 − 4x4 + 9x2 − 6

x3 + x2 − x− 1
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2.10 Improper Integration

Our interest in integrals so far has been to find the net area bounded by the curve f(x). Because of

this, we have restricted ourselves to closed and bounded intervals of the form [a, b]. Often, we are

interested in how a mathematical model behaves in the long-run, i.e., as x grows arbitrarily large

(or approaches ±∞). Under this framework, we develop the concept of the improper integral.

Given a function f(x) that is integrable over the closed region [a, b] for every real number b > a,

the improper integral of f(x) over the interval [a,∞) is defined (if it exists) as∫ ∞

a

f(x) dx = lim
b→∞

∫ b

a

f(x) dx.

By the Fundamental Theorem of Calculus, Part I, for any antiderivative F (x) of f(x), we have that

lim
b→∞

∫ b

a

f(x) dx = lim
b→∞

[F (b)− F (a)].

One can analogously define the improper integral of f(x) over the interval (−∞, b] as∫ b

−∞
f(x) dx = lim

a→−∞

∫ b

a

f(x) dx

whenever f(x) is integrable over the closed and bounded interval [a, b] for every real numbers a < b.

Even more, the doubly improper integral of f(x) over (−∞,∞) is defined as∫ ∞

−∞
f(x) dx = lim

b→∞

(
lim

a→−∞

∫ b

a

f(x) dx

)
= lim

a→−∞

(
lim
b→∞

∫ b

a

f(x) dx

)
whenever f(x) is integral over the closed and bounded interval [a, b] for all real numbers a and b.

Exercise 2.10.1. Compute the improper integral
∫∞
1

x−2 dx.

Exercise 2.10.2. Compute the improper integral
∫ 1

−∞ ex dx.

Exercise 2.10.3. Compute the improper integral
∫∞
0

xe−x dx.

Exercise 2.10.4. Compute the improper integral
∫∞
−∞(1 + x2)−1 dx.

Exercise 2.10.5. Compute the improper integral
∫∞
−∞ xe−x2

dx.

Each of the above functions admits horizontal asymptotes, hence the improper integrals we

computed were all finite, and the ends of our computations justified the means.

One can also consider the improper integral of a function with a vertical asymptote. Given that

f(x) is continuous on the half-open interval [a, b) and lim
x→b−

f(x) = ±∞, we have that

∫ b

a

f(x) dx = lim
t→b−

∫ t

a

f(x) dx = lim
t→b−

[F (t)− F (a)]

for any antiderivative F (x) of f(x) (if this limit exists). One can analogously define the improper

integral of f(x) over the half-open interval (a, b] whenever lim
x→a+

f(x) = ±∞ (provided it exists) as

∫ b

a

f(x) dx = lim
u→a+

∫ b

u

f(x) dx = lim
u→a+

[F (b)− F (u)].



2.10. IMPROPER INTEGRATION 49

Even if the integrand f(x) is unbounded as x > a approaches a and as x < b approaches b, it is

still possible to define the doubly improper integral of f(x) over (a, b) as∫ b

a

f(x) dx = lim
t→b−

(
lim
u→a+

∫ t

u

f(x) dx

)
= lim

u→a+

(
lim
t→b−

∫ t

u

f(x) dx

)
provided that f(x) is integrable over the closed interval [u, t] for all real numbers a < u < t < b.

Exercise 2.10.6. Compute the improper integral
∫ 1

0
(x− 1)−1 dx.

Exercise 2.10.7. Compute the improper integral
∫ 1

0
x−1/2 dx.

Exercise 2.10.8. Compute the improper integral
∫ 1

−1
x−2/3 dx.

Conventionally, we say that an improper integral converges whenever the limit of definition

exists, and we say that it diverges if the limit does not exist. Even if we cannot explicitly compute

an improper integral, the Comparison Theorem allows us to say whether it converges or diverges.

Theorem 2.10.9 (Comparison Theorem for Improper Integrals). Consider any pair of continuous

functions f(x) and g(x) such that f(x) ≥ g(x) ≥ 0 for all real numbers x ≥ a.

(a.) If
∫∞
a

f(x) dx converges, then
∫∞
a

g(x) dx converges.

(b.) If
∫∞
a

g(x) dx diverges, then
∫∞
a

f(x) dx diverges.

One can make analogous statements for the improper integrals
∫ b

−∞ f(x) dx and
∫ b

−∞ g(x) dx,

doubly improper integrals, and improper integrals of a function with a vertical asymptote.

Exercise 2.10.10. Determine if the improper integral
∫∞
0

xex dx converges.

Exercise 2.10.11. Determine if the improper integral
∫∞
0

x−2 sin2(x) dx converges.



Chapter 3

Physical Applications of Integration

3.1 Regions and Areas Bounded by Curves

Our introduction to the notion of integration already gave us an interpretation of the definite inte-

gral
∫ b

a
f(x) dx as the net area bounded by the graph of the curve f(x) and the x-axis. Consequently,

there are myriad benefits of using a definite integral to capture information about real-life observa-

tions: the Net Change Theorem states that if f ′(x) is the derivative of an integrable function f(x),

then the definite integral
∫ b

a
f ′(x) dx = f(b)− f(a) measures the net change of f(x) over the closed

interval [a, b]. For instance, if f ′(t) is the velocity of a particle observed from time t = a to time

t = b, then the definite integral f(b) − f(a)
∫ b

a
f ′(t) dt is the net displacement of the particle (i.e.,

the net distance traveled by the particle) during the time frame in which we observed it.

Crucially, we can view the x-axis of the Cartesian plane as the curve y = g(x) = 0, hence if

f(x) satisfies that f(x) ≥ g(x) = 0 (i.e., f(x) is non-negative) for all real numbers x such that

a ≤ x ≤ b, then the definite integral
∫ b

a
f(x) dx =

∫ b

a
[f(x)− g(x)] dx measures the area between the

curves f(x) and g(x). Generalizing this notion gives us a way to measure the area between any two

curves f(x) and g(x) satisfying f(x) ≥ g(x) for all real numbers x such that a ≤ x ≤ b.

Formula 3.1.1 (Area Formula for a Region Bounded by Four Curves). Consider any pair of

functions f(x) and g(x) satisfying that f(x) ≥ g(x) for all real numbers x such that a ≤ x ≤ b.

Provided that f(x) and g(x) are both integrable on [a, b], the curves f(x), g(x), x = a, and x = b

bound a region R in the Cartesian plane of finite area. Explicitly, the area of this region is given by

area(R) =

∫ b

a

[f(x)− g(x)] dx =

∫ b

a

f(x) dx−
∫ b

a

g(x) dx.

Basically, the proof of this formula boils down to the fact if f(x) and g(x) are both integrable

functions, then for any choice of partition a = x0 < x1 < x2 < · · · < xn = b of the interval [a, b] and

any choice of sample points x∗
i , the limit that defines the integral of f(x)− g(x) over [a, b] exists.∫ b

a

[f(x)− g(x)] dx = lim
n→∞

n∑
i=1

[f(x∗
i )− g(x∗

i )]∆xi = lim
n→∞

n∑
i=1

[f(x∗
i )]∆xi − lim

n→∞

n∑
i=1

g(x∗
i )∆xi

We will repeatedly see this kind of rationale applied throughout this chapter of the lecture notes: if

we want to compute area, volume, moment of inertia, work, etc., we can approximate by a Riemann

sum and take a limit to reduce the error of our approximation to zero.

50
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a b

f

g

R

x

y

Example 3.1.2. Compute the area of the region R bounded by y = x2 − 3, y = 1 − x2, x = −1,

and x = 1.

Solution. We begin by drawing each of the four curves y = x2 + 3, y = 1− x2, x = −1, and x = 1.

−1 1

y = x2 + 3

y = 1− x2

R

x

y

Consequently, we may label the curves as f(x) = x2 − 3 and g(x) = 1− x2; then, according to the

Area Formula for a Region Bounded by Four Curves, we have that

area(R) =

∫ 1

−1

[(x2 − 3)− (1− x2)] dx =

∫ 1

−1

(2x2 − 4) dx =

[
2

3
x3 − 4x

]1
−1

=
4

3
+ 4. ⋄

Example 3.1.3. Compute the area of the region R bounded by the curves y = 3x− 1, y = 3x− 6,

x = −1, and x = 2. Explain what would happen if the curves x = −1 and x = 2 were not given.

Solution. We begin by drawing each of the four curves y = 3x− 1, y = 3x− 6, x = −1, and x = 1.

−1 2

y = 3x− 1

y = 3x− 6

R

x

y
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Consequently, we may label the curves as f(x) = 3x− 1 and g(x) = 3x− 6; then, according to the

Area Formula for a Region Bounded by Four Curves, we have that

area(R) =

∫ 1

−1

[(3x− 1)− (3x− 6)] dx =

∫ 1

−1

5 dx = 5x

∣∣∣∣1
−1

= 5(1)− 5(−1) = 10.

Last, observe that if the curves x = −1 and x = 1 were not given in the problem statement, then

the area bounded by the parallel lines y = 3x− 1 and y = 3x− 6 would be infinite! ⋄

Example 3.1.4. Consider the functions f(x) = x2 + 1 and g(x) = 2x. Observe that f(x) = g(x)

if and only if x2 + 1 = 2x if and only if x2 − 2x + 1 = 0 if and only if (x − 1)2 = 0 if and only

if x = 1. By the same rationale, we have that f(x) ≥ g(x) for all real numbers x ≥ 1 because

f(x) − g(x) = (x − 1)2 ≥ 0 for all real numbers x ≥ 1. We can therefore consider the region R
bounded by the curves f(x) = x2 + 1, g(x) = 2x, and x = 4; the area of this region is given by

area(R) =

∫ 4

1

[f(x)− g(x)] dx =

∫ 4

1

(x− 1)2 dx =

[
(x− 1)3

3

]4
1

= 9.

Example 3.1.5. Consider the functions f(x) = e2x and g(x) = ex. Observe that f(x) = g(x) if

and only if e2x = ex if and only if e2x − ex = 0 if and only if ex(ex − 1) = 0 if and only if ex − 1 = 0

if and only if ex = 1 if and only if x = 0. Even more, we have that e2x ≥ ex for all real numbers

x ≥ 0 because e2x − ex = ex(ex − 1) and ex − 1 ≥ 0 for all real numbers x ≥ 0. Consequently, the

region R bounded by the curves f(x) = e2x, g(x) = ex, and x = ln(10) has area given by

area(R) =

∫ ln(10

0

[f(x)− g(x)] dx =

∫ 10

0

(e2x − ex) dx =

[
e2x

2
− ex

]ln(10)
0

=
81

2
.

Often, we will be interested in the region bounded by two curves f(x) and g(x) satisfying that

f(a) = g(a), f(b) = g(b), and f(x) ≥ g(x) for all real numbers x such that a ≤ x ≤ b.

a b

f

g

R

x

y

Below, we outline the basic strategy to find the area bounded by curves f(x) and g(x) such that

f(a) = g(a), f(b) = g(b), and f(x) ≥ g(x) for all real numbers x such that a ≤ x ≤ b.

Algorithm 3.1.6 (Determining the Region Bounded by four Curves). Complete the following steps

to determine the area bounded by the graphs of some curves f1(x), f2(x), x = a, and x = b.
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(i.) Provided that the equation f1(x) = f2(x) is readily solved by algebraic methods, one can find

the intersection point(s) of f1(x) and f2(x) by solving this equation in terms of x.

(ii.) By plugging in points, we can determine whether if f1(x) ≥ f2(x) or f1(x) ≤ f2(x) on the

interval. Label the larger function as f(x), and label the smaller function as g(x).

(iii.) By the Area Formula for a Region Bounded by Four Curves, the area of the region R bounded

by the curves can be found using x = a, x = b, and the intersection points of f1(x) and f2(x).

(iv.) Conversely, if the equation f1(x) = f2(x) is difficult to solve, then choose several x-values

so that the value of the function f1(x) is known (or can easily approximate and accurately

plotted on a graph). Use the rule of thumb that if f is a polynomial of degree n, it is best to

choose n+ 1 different x-values to plot f(x); use at least four points for other functions.

(v.) Plot the corresponding points (x, f1(x)), and use these to sketch the graph of f1(x).

(vi.) Repeat the second and third steps of the algorithm for the function f2(x).

(vii.) Label the top function as f(x) and the bottom function as g(x) based on the graph.

(viii.) Use the Area Formula for a Region Bounded by Four Curves to compute the area of R.

Example 3.1.7. Compute the area of the region R bounded by y = −x2 + 4 and y = x2 − 4.

Solution. We must first determine the intersection points of the curves y = −x2+4 and y = x2−4.

Consequently, we solve the equation −x2 + 4 = x2 − 4. We find that 2x2 = 8 so that x2 = 4 and

x = −2 or x = 2. Even more, the inequality −x2+4 ≥ x2− 4 holds for all real numbers x such that

−2 ≤ x ≤ 2 because −02 + 4 = 4 > −4 = 02 − 4. We conclude therefore that

area(R) =

∫ 2

−2

[(−x2 + 4)− (x2 − 4)] dx =

∫ 2

−2

(−2x2 + 8) dx =

[
−2

3
x3 + 8x

]2
−2

=
64

3
. ⋄

Exercise 3.1.8. Compute the area of the region R bounded by the curves y =
√
x and y = x2.

Generally, we say that a region R in the Cartesian plane is vertically simple if there exist

curves y = f1(x), y = f2(x), x = a, and x = b such that every point (x, y) in the region R satisfies

that a ≤ x ≤ b and f1(x) ≤ y ≤ f2(x). Graphically, the curve y = f1(x) can be viewed as the

“bottom” of the region R, and the curve y = f2(x) can be viewed as the “top” of R. Commonly, we

will refer to f1(x) as ybottom and f2(x) as ytop. Below is a reformulation of the above area formula.

Formula 3.1.9 (Area Formula for a Vertically Simple Region). Given a vertically simple region R
bounded by the curves ytop = f2(x), ybottom = f1(x), x = a, and x = b, we have that

area(R) =

∫ b

a

(ytop − ybottom) dx =

∫ b

a

[f2(x)− f1(x)] dx.

Our regions have been thus far vertically simple, hence we have been able to compute their areas

using the above formula. Unfortunately, there exist regions that are not vertically simple.
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Exercise 3.1.10. Prove that the region R bounded by the curves y = x, y = −x, and y = −2 is

not vertically simple; then, express R as the union of two vertically simple regions R = R1 ∪ R2,

and find the area of R by using the fact that area(R1 ∪R2) = area(R1) + area(R2).

Exercise 3.1.10 exhibits a region R that is not vertically simple; however, if we tilt our head

to the side, then we would see a vertically simple region. Explicitly, we say that the region R is

horizontally simple if there exist curves x = g1(y), x = g2(y), y = c, and y = d such that every

point (x, y) in the region R satisfies that g1(y) ≤ x ≤ g2(y) and c ≤ y ≤ d. Graphically, the curve

x = g1(y) is the “left” function, and the curve x = g2(y) is the “right” function. Like before, we

will refer to g1(y) as xleft and g2(y) as xright, so we have the following area formula.

Formula 3.1.11 (Area Formula for a Horizontally Simple Region). Given a horizontally simple

region R bounded by the curves xright = g2(y) and xleft = g1(y), y = c, and y = d, we have that

area(R) =

∫ d

c

(xright − xleft) dy =

∫ d

c

[g2(y)− g1(y)] dy.

Example 3.1.12. Prove that the region R of Example 3.1.10 is horizontally simple by exhibiting

well-defined curves xleft = g1(y), xright = g2(y), y = c, and y = d; then, compute the area of R.

Solution. Observe that the curves x = g1(y) = y and x = g2(y) = −y intersect at y = 0. Even more,

for all real numbers y such that −2 ≤ y ≤ 0, we have that 0 ≤ −y ≤ 2 so that g1(y) ≤ x ≤ g2(y) for

all real numbers −2 ≤ y ≤ 0. We conclude that the region R is horizontally simple with xleft = y

and xright = −y. By the Area Formula for a Horizontally Simple Region, we conclude that

area(R) =

∫ 0

−2

(xright − xleft) dy =

∫ 0

−2

(−y − y) dy =

∫ 0

−2

−2y dy =
[
−y2

]0
−2

= 4. ⋄

Example 3.1.13. Compute the area of the region R bounded by x =
√

1− y2 and x = 0.

Solution. Observe that
√

1− y2 = 0 if and only if 1 − y2 = 0 if and only if y2 = 1 if and only

if y = −1 or y = 1. Even more, for all real numbers y such that −1 ≤ y ≤ 1, we have that√
1− y2 ≥ 0, hence the region R is horizontally simple with xleft = 0 and xright =

√
1− y2. By the

Area Formula for a Horizontally Simple Region, we conclude that

area(R) =

∫ 1

−1

(xright − xleft) dy =

∫ 1

−1

√
1− y2 dy =

π

2
.

Explicitly, the integral can be evaluated by elementary geometry sinceR is half of the unit circle. ⋄

Unfortunately, it is also possible for a region to be neither vertically nor horizontally simple.

Example 3.1.14. Prove that the region R bounded by the curves y = x−2, y = 2−x, y = −x+2,

and y = −x− 2 is neither vertically nor horizontally simple; then, compute the area of R.

Solution. Graphing the region, we find that R is not vertically simple: indeed, for all real numbers

x such that −2 ≤ x ≤ 0, we have that −x − 2 ≤ y ≤ x + 2; however, for all real numbers x such

that 0 ≤ x ≤ 2, we have that x− 2 ≤ y ≤ −x + 2. Consequently, the top and bottom curves of R
are not well-defined. By the symmetry of R, it is not horizontally simple, either.

https://www.geogebra.org/classic/tvsyzpny
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On the bright side, as our above analysis illustrates, we can represent R as the union of two

vertically simple regions: indeed, we have that R = R1 ∪R2 for the vertically simple regions

R1 = {(x, y) | −2 ≤ x ≤ 0 and −x− 2 ≤ y ≤ x+ 2} and

R2 = {(x, y) | 0 ≤ x ≤ 2 and x− 2 ≤ y ≤ −x+ 2}.

Consequently, in view of the fact that area(R) = area(R1) + area(R2), we find that

area(R) =

∫ 0

−2

[(x+ 2)− (−x− 2)] dx+

∫ 2

0

[(−x+ 2)− (x− 2)] dx

=

∫ 0

−2

(2x+ 4) dx+

∫ 2

0

(−2x+ 4) dx =
[
x2 + 4x

]0
−2

+
[
−x2 + 4x

]2
0
= 8. ⋄

Our above exposition completely determines how to compute the area of a region as soon as we

can identify it as vertically or horizontally simple; however, there remains some nuance to these types

of problems. Our previous example establishes the existence of regions that are neither vertically nor

horizontally simple, so the question remains as to how we deal with these. One strategy is to break

up such a region into subregions that are either vertically or horizontally simple. (Later, in Calculus

III, we will learn the change of variables method that will make this issue more manageable.)

On the other hand, it is also completely possible that we are handed a region that is both

vertically and horizontally simple, and the description of the region as vertically simple renders the

integral infeasible to compute. Our best bet in this case is to check the description of the region as

horizontally simple and hope that the integrand works out to be nicer in this lens.

Example 3.1.15. Compute −
∫ 1

0
ln(x) dx by viewing it as the area of some region R.

Solution. Considering that ln(x) ≤ 0 for all real numbers x such that 0 < x ≤ 1, it follows that

−
∫ 1

0
lnx dx is the area of the region R bounded by the curves y = 0, y = ln(x), x = 0, and x = 1.

Consequently, we may view R as the horizontally simple region bounded by the curves x = 0,

x = ey, and y = 0. By the Area Formula for a Horizontally Simple Region, we conclude that∫ 1

0

ln(x) dx = area(R) =

∫ 0

−∞
ey dy = lim

a→−∞

∫ 0

a

ey dy = lim
a→−∞

[ey]0a = lim
a→−∞

(1− ea) = 1. ⋄

3.2 Volume, Density, and Average Value

Given any region R in the Cartesian plane that is bounded by several curves, by the intuition of

the previous section, we can endeavor to find the area of R by viewing the region as the union

of some (vertically or horizontally) simple subregions and summing the respective areas of each

subregion. Consequently, we might suspect that a similar approach could be used to compute the

volume of a three-dimensional solid. Explicitly, by taking n slices of equal width ∆x perpendicular

to the solid and using the fact that the volume of a solid of constant area is equal to the product

of area times width, we may approximate the volume of the solid as the sum of the product of the

cross-sectional area α(xi) of the ith cross section of the solid and the width ∆x of each slice

volume of a solid of variable cross-sectional area α(x) ≈
n∑

i=1

α(xi)∆x.
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By viewing this quantity as a Riemann sum and taking the limit as n approaches ∞, we have that

volume of a solid of variable cross-sectional area α(x) =

∫ b

a

α(x) dx.

Formula 3.2.1 (Volume of a Three-Dimensional Solid with Variable Cross-Sectional Area). Con-

sider any three-dimensional solid S whose cross-sectional area is determined by a continuous real

function α(x) of a real variable x for all real numbers x such that a ≤ x ≤ b. We have that

volume(S) =
∫ b

a

α(x) dx.

Example 3.2.2. Let us demonstrate that the volume of a sphere of radius R > 0 is 4
3
πR3. Consider

the sphere of radius R > 0 centered at the origin. Each of the cross sections of the sphere is a circle

of radius r(x) of each real number −R ≤ x ≤ R, hence the cross-sectional area of the cross section

of the sphere at x is simply the area of a circle of radius r(x), i.e., we have that a(x) = π[r(x)]2.

Consider the diagram below of the cross section of the sphere of radius R at the real number x.

By the Pythagorean Theorem, we have that R2 = x2 + [r(x)]2 so that [r(x)]2 = R2 − x2 and

α(x) = π(R2 − x2). By the formula for the Volume of a Three-Dimensional Solid with Variable

Cross-Sectional Area, we conclude that the volume of the sphere of radius R > 0 is given by∫ b

a

α(x) dx =

∫ R

−R

π(R2 − x2) dx = π

[
R2x− x3

3

]R
−R

=
4

3
πR3.

Example 3.2.3. Likewise, we may demonstrate that the volume of a right-circular cone of radius

R > 0 and height H > 0 is 1
3
πR2H. Consider the right-circular cone of radius R > 0 and height

R > 0 as the three-dimensional solid whose base is a circle of radius R > 0 centered at the origin

and whose horizontal cross sections from y = 0 to y = H are circles of radius r(y). Explicitly, the

diagram below depicts the right-circular cone of radius R > 0 and H > 0 as we have described it.
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Observe that in the diagram above, there are similar right triangles determined by the acute angle

θ formed by the y-axis and the vertex of the cone. Consequently, we have that

r(y)

H − y
= tan(θ) =

R

H
so that r(y) =

R

H
(H − y) = R− R

H
y.

Ultimately, it follows that the cross-sectional area of each horizontal slice of the cone at height y is

π[r(y)]2. By the formula for the Volume of a Three-Dimensional Solid with Variable Cross-Sectional

Area, we conclude that the volume of a right-circular cone of radius R > 0 and height H > 0 is∫ H

0

π

(
R− R

H
y

)2
dy =

πH

R

∫ R

0

u2 du =
πH

R

[
u3

3

]R
0

=
1

3
πR2H.

General physical principles dictate that the mass m of an object of length ℓ and constant linear

density ρ is given by m = ρℓ. Consider any object of variable linear density ρ(x) for some real

variable x such that a ≤ x ≤ b for some real numbers a and b. Like before, if we split the object

into n slices of equal length ∆x, then we can approximate its mass by the Riemann sum

mass of an object of variable linear density ρ(x) ≈
n∑

i=1

ρ(xi)∆x.

By taking the limit as the number of slices n tends to ∞, we reduce our error to zero, and we obtain

mass of an object of variable linear density ρ(x) =

∫ b

a

ρ(x) dx.

Formula 3.2.4 (Mass of an Object with Variable Linear Density). Consider any three-dimensional

object O whose linear density is determined by a continuous real function ρ(x) of a real variable x

for all real numbers x such that a ≤ x ≤ b. We have that

mass(O) =

∫ b

a

ρ(x) dx.
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Example 3.2.5. Let us compute the mass of a rod of unit length and linear density ρ(x) = xex
2
.

By the formula for the Mass of an Object with Variable Linear Density, the mass of the rod is∫ 1

0

xex
2

dx =

∫ 1

0

1

2
eu du =

[
1

2
eu
]1
0

=
1

2
(e− 1).

Given any list of n real number a1, . . . , an, recall that the average of these real numbers is

a1 + · · ·+ an
n

=
1

n

n∑
i=1

ai.

Consequently, we may use this approach if we wish to approximate the average value of a function

f(x) that is integrable on a closed interval [a, b]. Explicitly, we may choose n values f(x1), . . . , f(xn)

for some equally-spaced real numbers a = x1 ≤ · · · ≤ xn = b. Using the fact that ∆x = b−a
n

is the

distance between any two consecutive x-values, our above displayed equation gives that

average value of f(x) on [a, b] ≈ 1

n

n∑
i=1

f(xi) =
1

b− a
· b− a

n

n∑
i=1

f(xi) =
1

b− a

n∑
i=1

f(xi)∆x.

By recognizing this as a Riemann sum as taking the limit as n approaches ∞, we find that

average value of f(x) on [a, b] =
1

b− a

∫ b

a

f(x) dx.

Formula 3.2.6 (Average Value of an Integrable Real Function on a Closed and Bounded Interval).

Given any real function f(x) that is integrable on a closed and bounded interval [a, b] for some real

numbers a < b, the average value of f(x) on [a, b] is given by

average value of f(x) on [a, b] =
1

b− a

∫ b

a

f(x) dx.

Example 3.2.7. We will compute in this example the average value of the function f(x) = x−1

on the interval
[
1
e
, 1
]
. Observe that f(x) is continuous for all real numbers x ̸= 0, hence it is

integrable on the closed and bounded interval in question. By the formula for the Average Value

of an Integrable Real Function on a Closed and Bounded Interval, we conclude that

average value of x−1 on

[
1

e
, 1

]
=

∫ 1

1/e

1

x
dx = [ln(x)]11/e = − ln

(
1

e

)
= ln(e) = 1.

One of the most important applications of the average value of a function is the following.

Theorem 3.2.8 (Mean Value Theorem for Integrals). Given any real function f(x) that is contin-

uous on a closed interval [a, b], there exists a real number c satisfying that a ≤ c ≤ b and

f(c) =
1

b− a

∫ b

a

f(x) dx.

Exercise 3.2.9. Prove that if a vehicle travels through a 325 unit-long tunnel in four minutes and

the speed limit in the tunnel is 80 units per minute, then the vehicle broke the speed limit.
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3.3 Disk and Washer Method

Last section, we developed strategies to find the area of a two-dimensional region bounded by several

curves in the Cartesian plane. We prefer regions that are either vertically or horizontally simple.

Our next task expounds upon this theme to find the volume of a three-dimensional object S called

a solid of revolution that is obtained by rotating a region of the Cartesian plane about an axis.

Example 3.3.1. We can obtain any ball (i.e., a filled sphere) of radius r by rotating the semicircular

region R bounded by the curves y =
√
r2 − x2 and y = 0 about the x-axis.

R

x

y

Example 3.3.2. We can obtain any right-circular cone of radius r and height h by rotating the

triangular region R bounded by the curves y = −h
r
x+ h, x = 0, and y = 0 about the y-axis.

r

h

R

x

y

Consider any function f(x) that is continuous on a closed interval [a, b] and satisfies that f(x) ≥ 0

for all real numbers x such that a ≤ x ≤ b. Observe that if we rotate f(x) about the x-axis from

x = a to x = b, then we obtain a solid of revolution S. Each vertical cross section of S at x∗
i is

a disk of radius f(x∗
i ), hence the cross-sectional area of each slice of S is π[f(x∗

i )]
2. Consequently,

approximating the volume of S via the cross-sectional area of n slices of thickness ∆xi yields that

volume(S) ≈
n∑

i=1

π[f(x∗
i )]

2∆xi = π
n∑

i=1

[f(x∗
i )]

2∆xi.

By taking the limit as n tends to infinity, we reduce our error to zero and obtain the following.

Formula 3.3.3 (Disk Method). Given any function f(x) that is continuous on a closed interval

[a, b] and satisfies that f(x) ≥ 0 for all real numbers x such that a ≤ x ≤ b, the solid of revolution

S obtained by rotating f(x) about the x-axis from x = a to x = b has the following volume.

volume(S) = π

∫ b

a

[f(x)]2 dx
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Likewise, if g(y) is any function that is continuous on a closed interval [c, d] along the y-axis and

satisfies that g(y) ≥ 0 for all real numbers y such that c ≤ y ≤ d, the solid of revolution S obtained

by rotating g(y) about the y-axis from y = c to y = d has the following volume.

volume(S) = π

∫ d

c

[g(y)]2 dy

Example 3.3.4. We can obtain any ball of radius r by rotating the semicircular region R bounded

by the curves y =
√
r2 − x2 and y = 0 about the x-axis. Certainly, the function f(x) =

√
r2 − x2

is non-negative, hence the Disk Method yields that the volume of a ball of radius r is given by

π

∫ r

−r

(r2 − x2) dx = π

[
r2x− x3

3

]r
−r

=
4πr3

3
.

Example 3.3.5. We can obtain any right-circular cone of radius r and height h by rotating the

triangular region R bounded by the curves y = −h
r
x + h, x = 0, and y = 0 about the y-axis.

Observe that the function g(y) = − r
h
y + r is positive for all real numbers y such that 0 ≤ y ≤ h.

By the Disk Method, the volume of a right-circular cone of radius r and height h is given by

π

∫ h

0

(
− r

h
y + r

)2
dy =

πh

r

∫ r

0

u2 du =
πh

r

[
u3

3

]r
0

=
π

3
r2h.

Example 3.3.6. We can obtain a right-circular cylinder of radius r and height h by rotating the

rectangular region R bounded by the curves y = 0, y = h, x = 0, and x = r about the y-axis. By

the Disk Method, we can find the volume of this solid of revolution by computing the integral

π

∫ h

0

r2 dy = π
[
r2y

]h
0
= πr2h.

Example 3.3.7. Compute the volume of the solid of revolution S obtained by rotating the curve

f(x) =
√
x about the x-axis from x = 0 to x = 4.

Solution. Considering that f(x) ≥ 0 for all real numbers x such that 0 ≤ x ≤ 4, we have that

volume(S) = π

∫ 4

0

x dx = π

[
x2

2

]4
0

= 8π. ⋄

Given any pair of functions f(x) and g(x) that are continuous on a closed interval [a, b] and

satisfy that f(x) ≥ g(x) ≥ 0 for all real numbers x such that a ≤ x ≤ b, we may consider the region

R bounded by the curves y = f(x), y = g(x), x = a, and x = b. By rotating R about the x-axis,

we obtain a solid of revolution S. Each vertical cross section of S at x∗
i is the difference between a

disk of radius f(x∗
i ) and a disk of radius g(x∗

i ) — called a washer of inner radius g(x∗
i ) and outer

radius f(x∗
i ) — hence the cross-sectional area of each slice is π[f(x∗

i )]
2 − π[g(x∗

i )]
2. Consequently,

approximating the volume of S via the cross-sectional area of n slices of thickness ∆xi yields that

volume(S) ≈
n∑

i=1

(π[f(x∗
i )]

2 − π[g(x∗
i )]

2)∆xi = π

n∑
i=1

([f(x∗
i )]

2 − [g(x∗
i )]

2)∆xi.

By taking the limit as n tends to infinity, we reduce our error to zero and obtain the following.
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Formula 3.3.8 (Washer Method). Given any functions f(x) and g(x) that are continuous on a

closed interval [a, b] and satisfy that f(x) ≥ g(x) ≥ 0 for all real numbers x such that a ≤ x ≤ b,

the solid of revolution S obtained by rotating the region bounded by y = f(x), y = g(x), x = a, and

x = b about the x-axis has cross-sections that are washers. Even more, it holds that

volume(S) = π

∫ b

a

([f(x)]2 − [g(x)]2) dx.

Likewise, if h(y) and k(y) are any functions that are continuous on a closed interval [c, d] along

the y-axis and satisfy that h(y) ≥ k(y) ≥ 0 for all real numbers y such that c ≤ y ≤ d, the solid of

revolution S obtained by rotating the region bounded by x = h(y), x = k(y), y = c, and y = d about

the y-axis has cross-sections that are washers. Even more, it holds that

volume(S) = π

∫ d

c

([h(y)]2 − [k(y)]2) dy.

One can see by the diagram above that the Washer Method is so named because the cross

sections of the solid of revolution are shaped like washers. Below are some examples for illustration.

Example 3.3.9. Compute the volume of the solid of revolution S obtained by rotating the region

bounded by the curves y = 2x, y = 2x− 1
2
, x = 1, and x = 3 about the x-axis.

Solution. We must first determine the outer radius and the inner radius of each washer that con-

stitutes the cross-section of S. Considering that 2x > 2x− 1
2
for all real numbers x, it follows that

f(x) = 2x and g(x) = 2x− 1
2
. By the Washer Method, we conclude that

volume(S) = π

∫ 3

1

[
(2x)2 −

(
2x− 1

2

)2]
dx = π

∫ 3

1

(
2x− 1

4

)
dx = π

[
x2 − 1

4
x

]3
1

=
15π

2
. ⋄

Example 3.3.10. Compute the volume of the solid of revolution S obtained by rotating the region

bounded by the curves y = 4− x2 and y = 3 about the x-axis.
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Solution. We are not given the bounds on x, hence we must determine the x-values of the intersection

points of the two curves y = 4−x2 and y = 3. Explicitly, we must solve the equation 4−x2 = 3. We

find that x2 − 1 = 0 so that x = ±1. Observe that for every real number x such that −1 ≤ x ≤ 1,

we have that 4− x2 ≥ 3. By the Washer Method, the volume of S is given by

volume(S) = π

∫ 1

−1

[(4− x2)2 − 32] dx = π

∫ 1

−1

(x4 − 8x2 + 7) dx = π

[
x5

5
− 8x3

3
+ 7x

]1
−1

=
136π

15
. ⋄

We have thus far seen that we can obtain a surface of revolution by rotating a region in the

Cartesian plane about some axis; however, we have limited our attention to the coordinate axes

(either the x-axis or the y-axis). Essentially, the method for determining the volume of any solid of

revolution obtained by rotating a region about an axis is analogous to what we have done previously.

We will assume to this end that C is any real number such that f(x) and g(x) are continuous on a

closed interval [a, b] and satisfy that f(x) ≥ g(x) ≥ C for all real numbers x such that a ≤ x ≤ b.

Consider the region R bounded by the curves y = f(x), y = g(x), x = a, and x = b. By rotating R
about the line y = C, we obtain a solid of revolution S. Each vertical cross section of S at x∗

i is the

difference between a disk of radius f(x∗
i )−C and a disk of radius g(x∗

i )−C, hence the cross-sectional

area of each slice is π[f(x∗
i ) − C]2 − π[g(x∗

i ) − C]2. Consequently, approximating the volume of S
via the cross-sectional area of n slices of thickness ∆xi yields that

volume(S) ≈
n∑

i=1

(π[f(x∗
i )− C]2 − π[g(x∗

i )− C]2)∆xi = π
n∑

i=1

([f(x∗
i )− C]2 − [g(x∗

i )− C]2)∆xi.

By taking the limit as n tends to infinity, we reduce our error to zero and obtain the following.

Formula 3.3.11 (Washer Method for a Non-Coordinate Axis). Given any real number C and any

functions f(x) and g(x) that are continuous on a closed interval [a, b] and satisfy that f(x) ≥ g(x) ≥
C for all real numbers x such that a ≤ x ≤ b, the solid of revolution S obtained by rotating the

region bounded by y = f(x), y = g(x), x = a, and x = b about the line y = C satisfies that

volume(S) = π

∫ b

a

([f(x)− C]2 − [g(x)− C]2) dx.

Likewise, if C is any real number and h(y) and k(y) are any functions that are continuous on a

closed interval [c, d] along the y-axis and satisfy that h(y) ≥ k(y) ≥ C for all real numbers y such

that c ≤ y ≤ d, the solid of revolution S obtained by rotating the region bounded by x = h(y),

x = k(y), y = c, and y = d about the line x = C satisfies that

volume(S) = π

∫ d

c

([h(y)− C]2 − [k(y)− C]2) dy.

Example 3.3.12. Compute the volume of the solid of revolution S obtained by rotating the region

R bounded by f(x) =
√
x and g(x) = x2 about the line y = −1.

Solution. We will use the Washer Method for a Non-Coordinate Axis. We are not provided with

the limits of integration for the definite integral here, so we must compute them. We achieve this

by noticing that f(x) = g(x) if and only if
√
x = x2 if and only if x = x4 if and only if x = 0 or
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x3 = 1 if and only if x = 0 or x = 1. Put another way, the curves f(x) =
√
x and g(x) = x2 intersect

when x = 0 and x = 1. Considering that
√
x ≥ x2 for all real numbers x such that 0 ≤ x ≤ 1,

volume(S) = π

∫ 1

0

([
√
x+ 1]2 − [x2 + 1]2) dx

= π

∫ 1

0

(x+ 2
√
x+ 1− x4 − 2x2 − 1) dx

= π

∫ 1

0

(−x4 − 2x2 + x+ 2
√
x) dx

= π

[
−x5

5
− 2x3

3
+

x2

2
+

4x3/2

3

]1
0

=
29

30
π. ⋄

1

1
√
x

x2

R

x

y

Example 3.3.13. Compute the volume of the solid of revolution S obtained by rotating the region

R bounded by f(x) = 4− x2, g(x) = 0, and x = 0 about the line x = −1.

Solution. Care must be taken: the functions we are given are defined with respect to x, but our

axis of revolution x = −1 is vertical. Consequently, we must solve for y = f(x) = 4 − x2 in terms

of y. Observe that y = 4− x2 if and only if x2 = 4− y if and only if x = h(y) =
√
4− y. Crucially,

we use the positive square root because the region is bounded on the left by x = 0, hence x must

be positive. Observe that x = 0 is the left-hand curve and x =
√
4− y is the right-hand curve; the

bounds of integration are y = g(x) = 0 and y = 4 because when x = 0, we have that y = f(0) = 4.

2

4

x = −1

R

x =
√
4− y

x

y
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By the Washer Method for a Non-Coordinate Axis, we conclude that

volume(S) = π

∫ 4

0

([√
4− y + 1

]2
− [0 + 1]2

)
dy

= π

∫ 4

0

(
4− y + 2

√
4− y + 1− 1

)
dy

= π

∫ 4

0

(−y + 2(4− y)1/2 + 4) dy

= π

[
−y2

2
− 4(4− y)3/2

3
+ 4y

]4
0

=
56

3
π. ⋄

3.4 Shell Method

Unfortunately, the Disk Method and Washer Method work best (and sometimes only) when the axis

of revolution under consideration is perpendicular to the region we are rotating. Quite technically,

if we wish to revolve a vertically simple region about a line of the form y = C for some real number

C (or likewise if we wish to revolve a horizontally simple region about a line of the form x = C),

then the Disk Method or the Washer Method can be used; however, if we wish to rotate a vertically

simple region about a line of the form x = C, then we would need to determine the function inverse

of the curves in question. Explicitly, Examples 3.3.5 and 3.3.12 bear witness to this process.

Often, the inverse of a function is quite difficult (or impossible) to compute, hence the Disk

Method and the Washer Method fail to produce the volume of the resulting solid of revolution.

Example 3.4.1. Observe that the continuous function f(x) = −x3 + 2x2 − x+ 1 has no function

inverse on the closed interval
[
0, 3

2

]
because f(x) fails the Horizontal Line Test.

f(x) R

x

y

Consequently, the Disk Method cannot be used to find the volume of the solid of revolution obtained

by rotating R about the y-axis without splitting the interval
[
0, 3

2

]
so that R is the union of two

horizontally-simple regions. Even with this partitioning of R accomplished, it would subsequently

be rather cumbersome to find the inverse function x = f−1(y) on each of these intervals.

Using Example 3.4.1 as motivation, we develop another method to compute the volume of a solid

of revolution S. Consider any real numbers b > a ≥ 0 and any function f(x) that is continuous on
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the closed interval [a, b] and satisfies that f(x) ≥ 0 for all real numbers x such that a ≤ x ≤ b.

Given any real number a ≤ x∗
i ≤ b, if we revolve any point (x∗

i , f(x
∗
i )) about the y-axis, we obtain a

cylindrical shell of radius x∗
i , height f(x

∗
i ), and thickness ∆xi. Observe that the surface area of such

a cylindrical shell is product of its circumference and its height. Explicitly, the surface area of a

cylindrical shell is 2πx∗
i f(x

∗
i ), hence each cylindrical shell has volume 2πx∗

i f(x
∗
i )∆xi. Consequently,

approximating the volume of S as the sum of the volumes of n cylindrical shells yields that

volume(S) ≈
n∑

i=1

2πx∗
i f(x

∗
i )∆xi = 2π

n∑
i=1

x∗
i f(x

∗
i )∆xi.

By taking the limit as n tends to infinity, we reduce our error to zero and obtain the following.

Formula 3.4.2 (Shell Method I). Given any function f(x) that is continuous on a closed interval

[a, b] and satisfies that f(x) ≥ 0 for all real numbers x such that a ≤ x ≤ b, the solid of revolution

S obtained by rotating f(x) about the y-axis from x = a to x = b has the following volume.

volume(S) = 2π

∫ b

a

xf(x) dx

Likewise, if g(y) is any function that is continuous on a closed interval [c, d] along the y-axis and

satisfies that g(y) ≥ 0 for all real numbers y such that c ≤ y ≤ d, the solid of revolution S obtained

by rotating g(y) about the x-axis from y = c to y = d has the following volume.

volume(S) = 2π

∫ d

c

yg(y) dy

Example 3.4.3. Compute the volume of the solid of revolution S obtained by rotating the region

bounded by the curves y = −x3 + 2x2 − x+ 1, y = 0, x = 0, and x = 3
2
about the y-axis.

Solution. Considering that we are revolving a vertically simple region about a vertical axis, let us

employ the Shell Method I. By a simple matter of plug-and-chug, we have that

volume(S) = 2π

∫ 3/2

0

x(−x3 + 2x2 − x+ 1) dx

= 2π

∫ 3/2

0

(−x4 + 2x3 − x2 + x) dx

= 2π

[
−x5

5
+

x4

2
− x3

3
+

x2

2

]3/2
0

=
81

40
π. ⋄

Like with the Washer Method, there is an obvious analog to the aforementioned Shell Method

for regions bounded by more general curves. Explicitly, for the region bounded by some curves

y = f(x), y = g(x), x = a, and x = b such that f(x) ≥ g(x) for all real numbers x such that

a ≤ x ≤ b, the height of a cylindrical shell is the difference of the top and bottom curves.
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Formula 3.4.4 (Shell Method II). Given any real number C and any functions f(x) and g(x) that

are continuous on a closed interval [a, b] and satisfy that f(x) ≥ g(x) for all real numbers x such

that a ≤ x ≤ b and either a ≥ C or b ≤ C, the solid of revolution S obtained by rotating the region

bounded by y = f(x), y = g(x), x = a, and x = b about the line y = C has the following volume.

volume(S) = 2π

∫ b

a

|x− C|[f(x)− g(x)] dx

Likewise, if C is any real number and h(y) and k(y) are any functions that are continuous on a

closed interval [c, d] along the y-axis and satisfies that h(y) ≥ k(y) ≥ C for all real numbers y such

that c ≤ y ≤ d and either c ≥ C or d ≤ C, the solid of revolution S obtained by rotating the region

bounded by x = h(y), x = k(y), y = c, and y = d about the line y = C has the following volume.

volume(S) = 2π

∫ d

c

|y − C|[h(y)− k(y)] dy

Example 3.4.5. Compute the volume of the solid of revolution S obtained by rotating the region

bounded by the curves y = x3 − x+ 1 and y = x2 − x+ 1 about the y-axis.

1

1
y = x2 − x+ 1

y = x3 − x+ 1

R

x

y

Solution. By the graph provided above, it follows that f(x) = x2 − x + 1 and g(x) = x3 − x + 1

for x = 0 and x = 1. We can verify these bounds of integration algebraically: indeed, we have that

f(x) = g(x) if and only if x2−x+1 = x3−x+1 if and only if x2 = x3 if and only if x = 0 or x = 1.

Consequently, by the Shell Method II, we conclude that the volume of the solid of revolution is

volume(S) = 2π

∫ 1

0

x(x2 − x3) dx = 2π

∫ 1

0

(x3 − x4) dx = 2π

[
x4

4
− x5

5

]1
0

=
π

10
. ⋄

Example 3.4.6. Explain the difficulty in using the Washer Method to compute the volume of the

solid of revolution S obtained by rotating the region bounded by the curves x = y − y2 and x = 0

about the x-axis; then, use the Shell Method I to compute this volume.

1
x = y − y2

x

y
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Solution. Our curve x = y − y2 of x is a function of y, and our axis of rotation is horizontal.

Consequently, in order to use the Washer Method, we would first need to determine two functions

f(x) and g(x) and a real number b such that f(x) ≥ g(x) for all real numbers x such that 0 ≤ x ≤ b.

We could achieve this because the region above is vertically simple, but because it is also horizontally

simple, it is indeed easier to use the Shell Method. Explicitly, with the Shell Method, the height of

a cylindrical shell is h(y) = y − y2; the radius of a cylindrical shell is y; hence, we find that

volume(S) = 2π

∫ 1

0

y(y − y2) dy = 2π

∫ 1

0

(y2 − y3) dy = 2π

[
y3

3
− y4

4

]1
0

=
π

6
. ⋄

Example 3.4.7. Compute the volume of the solid of revolution S obtained by rotating the region

bounded by the curves y = −x3 + 2x2 − x+ 1, y = 0, x = 0, and x = 3
2
about the line x = 2.

f(x) R

x

y

Solution. Observe that the height of a cylindrical shell is −x3 + 2x2 − x + 1, and the radius of

a cylindrical shell is 2 − x because for each real number x such that 0 ≤ x ≤ 3
2
, we have that

|x− 2| = −(x− 2) = 2− x. Consequently, by the Shell Method II, we conclude that

volume(S) = 2π

∫ 3/2

0

(2− x)(−x3 + 2x2 − x+ 1) dx

= 2π

∫ 3/2

0

(x4 − 4x3 + 5x2 − 3x+ 2) dx

= 2π

[
x5

5
− x4 − 5x3

3
− 3x2

2
+ 2x

]3/2
0

=
273

80
π. ⋄

3.5 Work

One of the foremost applications of integration is in the applied sciences of physics and chemistry.

Explicitly, the definite integral can be applied to compute a physical quantity called work that is

defined as the amount of energy expended to displace an object a distance d units by a force of

F units. By Newton’s Second Law of Motion, if an object of mass m moves along a straight

path according to the position function s(t) measured with respect to time t, then we have that

F = m
d2s

dt2
(force = mass× acceleration).
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Customarily, the mass of an object is measured in kilograms (kg) and the position of an object is

measured in meters (m), hence the force of an object is measured in Newtons (N = kg ·m/s2);

however, it is also possible to measure force in terms of pounds (lbs). Either way, if we denote by

W the work required to displace an object d meters by a constant force of F Newtons, then

W = Fd (work = force× distance).

We note that work W is measured in Newton-meters or joules (J). Often, we will perform work

against the force of gravity; in this case, it will typically be useful to know that the gravitational

acceleration constant (or more simply, the acceleration of an object due to gravity) is given by

g = 9.8
m

s2
.

Even more, in the context of work against the force of gravity, it is possible to measure the force in

terms of pounds (lbs) and the distance in terms of feet (ft); under these conventions, the resulting

work W is measured in foot-pounds (ft-lbs). Context ought to make it clear which units to use.

Exercise 3.5.1. Compute the work done to move an object 10 meters with a force of 3.5 Newtons.

Solution. By definition, we have that W = Fd = (3.5)(10) = 35 J. ⋄

Exercise 3.5.2. Compute the work done to lift a 50-kg object a height of 1.5 meters.

Solution. Considering that we are not provided with the force, we must find it. We are performing

work against the force of gravity, hence we have that F = mg = (50)(9.8) = 490 N. Once we have

the force required to lift the object, we may use it to compute W = Fd = (490)(1.5) = 735 J. ⋄

Exercise 3.5.3. Compute the work done to lift a 20-lb basket of towels a height of 3 feet.

Solution. We are given the force required to lift the object in the form of a weight (20-lb), and we

are given a distance in terms of feet. Consequently, our units of work will be measured in ft-lbs;

using the formula for work as force times distance, we find that W = (20)(3) = 60 ft-lbs. ⋄

Exercise 3.5.4. Compute the weight of an upright piano if it requires 9000 ft-lbs to lift it 20 feet.

Solution. We are provided with the work W = 9000 ft-lbs and the distance of 20 feet. By solving

for F in the formula W = Fd, we find that F = W/d = 9000/20 = 450 pounds (lbs). ⋄

Often, in real world scenarios, the force required to displace an object is not constant but

rather depends upon some physical constraint x such as distance along a vertical or horizontal

axis. Explicitly, we may view this variable force F (x) as a function of x. Consequently, if we wish

to determine the work W required to move an object from x = a to x = b, then we may first

approximate W by splitting the interval [a, b] into n subintervals [xi−1, xi] each of length ∆xi for

some real numbers a = x0 < x1 < x2 < · · · < xn = b. Observe that if the number n of subintervals is

large, then the length ∆xi of each subinterval is small, so we may assume the force F (x∗
i ) is constant

on the interval [xi−1, xi]; the work required to move the object a distance of ∆xi is Wi = F (x∗
i )∆xi.

By summing each of these approximations Wi, we obtain a rough estimate of the total work

W ≈
n∑

i=1

Wi =
n∑

i=1

F (x∗
i )∆xi
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Considering that the force exerted on an object must be a continuous function of x, it follows that

we can approximate the work in such a way that our error is reduced to zero as n tends to infinity.

W = lim
n→∞

n∑
i=1

F (x∗
i )∆xi =

∫ b

a

F (x) dx.

Formula 3.5.5 (Work Done by a Variable Force). Given any continuous function F (x) that mea-

sures the force required to displace an object from a point x = a to a point x = b along the x-axis,

the work done in moving the object from x = a to x = b is given by the definite integral

W =

∫ b

a

F (x) dx.

Exercise 3.5.6. Compute the work required to move an object from the point x = −1 to the point

x = 1 if a force of F (x) = x3 +3x2 Newtons acts on the object at a point x meters from the origin.

Solution. By the formula for Work Done by a Variable Force, we have that

W =

∫ 1

−1

(x3 + 3x2) dx =

[
x4

4
+ x3

]1
−1

=

(
1

4
+ 1

)
−
(
1

4
− 1

)
= 2 J. ⋄

Exercise 3.5.7. Compute the work required to move an object from the point x = 0 to the point

x = π
3
if a force of F (x) = tan2(x) pounds acts on the object at a point x feet from the origin.

Solution. By the formula for work done by a variable force, we have that

W =

∫ π/3

0

tan2(x) dx =

∫ π/3

0

[sec2(x)− 1] dx = [tan(x)− x]π/30 =
√
3− π

3
ft-lbs. ⋄

Exercise 3.5.8. Compute the work required to move an object from the point x = −1 to the point

x = 3 if a force of F (x) = x2(x− 1)99 Newtons acts on the object at x meters from the origin.

Solution. By the formula for work done by a variable force, we have that

W =

∫ 3

−1

x2(x− 1)99 dx.

We could approach this integral using integration by parts with u = x2 and dv = (x− 1)99 dx, but

it is much simpler to notice that if u = x− 1, then du = dx and∫ 3

−1

x2(x− 1)99 dx =

∫ 2

−2

(u+ 1)2u99 du =

∫ 2

−2

(u2 + 2u+ 1)u99 du =

∫ 2

−2

(u101 + 2u100 + u99) du.

Crucially, observe that the real polynomial u101 + u99 is an odd function because each monomial in

this polynomial has odd degree, hence the part of the integral involving each of these functions is

zero because it is an odd function over a symmetric interval. Consequently, we conclude that

W =

∫ 3

−1

x2(x− 1)99 dx =

∫ 2

−2

2u100 du =

[
2u101

101

]2
−2

=
2103

101
J. ⋄
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Chemistry students often think about work in the context of fluids, pressure, and the force

required to compress some volume of fluid. By simplifying our view of the system in question, this

process can be modelled by the force required to stretch or compress a string. Crucially, Hooke’s

Law states that the force F (x) required to maintain a spring at a constant distance of x units beyond

equilibrium is equal and opposite to the force exerted by the string against the compression (or

stretching); the force the spring exerts to remain in equilibrium is called the spring constant, and

it is denoted by k. Explicitly, under these conventions, Hooke’s Law states that

F (x) = kx

so that k is measured in Newtons per meter. Consequently, the formula for Work Done by a Variable

Force and Hooke’s Law together give rise to the following formula for work done on a spring.

Formula 3.5.9 (Work Done on a Spring). Given a spring of spring constant k Newtons per meter,

the work required to move a spring from x = a to x = b meters beyond equilibrium is given by

W =

∫ b

a

kx dx.

Bear in mind that if equilibrium is taken as x = 0 meters, then if we wish to compress a spring a

distance of 1 cm beyond equilibrium, we need to consider the points x = 0 and x = −0.01 meters.

Conversely, to stretch a spring 2 cm beyond equilibrium, we consider the points x = 0 and x = 0.02.

Exercise 3.5.10. Compute the work required to compress a spring a distance of 1.7 meters beyond

equilibrium if the spring constant is known to be 1400 Newtons per meter.

Solution. By the formula for Work Done on a Spring, we have that

W =

∫ 1.7

0

1400x dx =
[
700x2

]1.7
0

= 2023 J. ⋄

Exercise 3.5.11. Compute the work required to stretch a spring from −8 cm beyond equilibrium

to 2 cm beyond equilibrium if the spring constant is known to be 100 Newtons per meter.

Solution. By the formula for work done on a spring, we have that

W =

∫ 0.02

−0.08

100x dx =
[
50x2

]0.02
−0.08

= −0.3 J.

We note that this makes sense intuitively: indeed, it requires negative work to return to the spring

to equilibrium, and we are not stretching the spring as far as it was compressed in the first place. ⋄

Exercise 3.5.12. Consider a spring of length 7 inches. Compute the spring constant of the spring

if it requires a force of 72 ft-lbs to stretch the spring to a length of 16 inches; then, use this to

compute the work required to compress the spring 3 inches beyond equilibrium.

Solution. Observe that to stretch the spring to a length of 16 inches, we must stretch the spring 9

inches (or 0.75 feet) beyond equilibrium. By the formula for Work Done on a Spring, we have that

72 =

∫ 0.75

0

kx dx =

[
kx2

2

]0.75
0

=
9k

64
.
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By solving for k, we find that k = 256 pounds per foot. Consequently, by the aforementioned

formula, we conclude that the work required to compress the spring 3 inches beyond equilibrium is

W =

∫ −0.25

0

256x dx =
[
128x2

]−0.25

0
= 8 ft-lbs. ⋄

Exercise 3.5.13. Consider a 10-cm spring. Compute the work required to stretch the spring 5 cm

beyond equilibrium if it requires a force of 6000 Newtons to maintain the spring at length 5 cm.

Solution. By Hooke’s Law, the force required to maintain the spring at a length of x meters beyond

equilibrium is given by kx. We are given that if we compress the spring to a length of 5 cm, it

requires a force of 6000 Newtons to maintain the spring at this length, hence we have that

0.05k = 6000 so that k = 120000 Newtons per meter.

We next stretch the spring 5cm beyond equilibrium. By the formula for work done on a spring,

W =

∫ 0.05

0

120000x dx =
[
60000x2

]0.05
0

= 150 J. ⋄

Even more, it is typical in real world applications (such as chemical engineering and civil engi-

neering) to consider work done against the force of gravity. General physical principles dictate that

the mass of an object is equal to the product of the density and volume of the object. Explicitly,

if the m is the mass, ρ is the density, and v is the volume of an object, then we have that

m = ρv (mass = density× volume).

We will typically use kilogram (kg) units to measure mass; volume will be measured in cubic meters

(m3); and density is therefore given by kilograms per cubic meter (kg/m3). Often, the volume of an

object is not known but can be measured as the product of its cross-sectional area and its thickness.

Explicitly, if the cross-sectional area of an object is some function a(x) of the distance x on some

axis and the thickness of a cross section of the object is ∆x, then the volume of the object is

v(x) = a(x)∆x (volume = cross-sectional area× thickness).

Combined, these observations are typically used to perform the required force analysis to

determine the force function F (x) that needs to be integrated. Let us illustrate with some examples.

Example 3.5.14. Consider a 50-foot hanging chain of weight-density 10 lb/ft. We will compute

the work done against the force of gravity to wind up the chain. Be careful to notice that pounds

measures the force, so our final work should be in foot-pounds. Given that the weight-density of the

chain is 10 lb/ft, the force exerted to lift a point x∗
i on the chain a distance of ∆xi feet is given by

F (x∗
i ) = 10∆xi pounds whenever ∆xi is small. Overall, we must lift the chain a distance of 50 feet,

so the total distance travelled by a point x∗
i on the chain is 50 − x∗

i feet. Consequently, the work

required to lift a point x∗
i on the chain a distance of 50 − x∗

i feet is given by 10(50 − x∗
i )∆xi. We

conclude that the work required to wind the entire 50 feet of chain is given by the definite integral

W = lim
n→∞

n∑
i=1

10(50− x∗
i )∆xi =

∫ 50

0

10(50− x) dx = 10

[
50x− x2

2

]50
0

= 12500 ft-lbs.
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Example 3.5.15. Consider a 15-meter hanging rope of uniform linear density that weighs 105 kg

and has a 20-kg weight attached at the bottom. We will compute the work done against the force

of gravity to lift the weight from the ground to a height of 10 meters. We will adopt an approach

in this example that is substantially different from our technique in Example 3.5.14; the reader can

determine their preferred method. Considering that the rope has length 15 meters, uniform linear

density, and weighs 105 kg, we conclude that the linear density of the rope is 7 = 105/15 kilograms

per meter. Consider a point x along the length of the rope such that x = 0 is the bottom of the rope

and x = 15 is the top of the rope. We must pull on the rope to raise the weight off the ground; the

length of rope remaining after pulling the rope a distance of x meters is 15 − x meters, hence the

mass of rope remaining at that point is 7(15−x) kilograms; and the total mass of the rope and the

weight combined is 125 − 7x = 7(15 − x) + 20 kilograms. By taking into account the acceleration

due to gravity, the force exerted on a point on the rope a distance of x meters from the ground is

F (x) = 1225− 68.6x Newtons. We conclude by the Work Done by a Variable Force formula that

W =

∫ 10

0

(1225− 68.6x) dx = 8820 J.

Example 3.5.16. Consider an upside-down right-circular conical tank that is 60-meters tall with

a radius of 10 meters. We wish to pump heavy crude oil out of the tank through a spout located 3

meters above the tank. We will assume that the density of heavy crude oil is 900 kg/m3. We begin

with a force analysis to compute the work to empty the tank. Consider a point x along the height

of the tank such that x = 0 is the bottom of the tank. Each layer of heavy crude oil at a height of

x∗
i meters must travel a total of 60− x∗

i meters to get to the top of the tank; then, the layer must

travel a distance of 3 meters through the spout. Consequently, a layer of crude oil at height x∗
i must

travel a distance of 63 − x∗
i meters. Certainly, the work we are performing is against the force of

gravity, so in order to lift a layer of crude oil at a height of x∗
i meters, we must exert a force of

F (x∗
i ) = 9.8m(x∗

i )

for the mass m(x∗
i ) of heavy crude oil. Considering that mass is density times volume, we have that

m(x∗
i ) = 900v(x∗

i )

for the volume v(x∗
i ) of heavy crude oil. Crucially, we have used here that the density of the oil is

900 kg/m3. Considering the shape of the tank, the cross-sectional area a(x∗
i ) of a layer of oil at a

height of x∗
i meters depends upon x∗

i : indeed, each cross-section is a circle of radius r(x∗
i ) because

the tank is an upside-down right-circular cone, hence the cross-sectional area of a layer of oil is

a(x∗
i ) = π[r(x∗

i )]
2.

We use similar triangles to deduce that the radius r(x∗
i ) of the cross section at height x∗

i is given by

r(x∗
i ) =

x∗
i

6
.

Consequently, if the thickness of each layer of oil is ∆xi, then our force analysis yields that

Wi = (9.8)(900)
( π

36
(x∗

i )
2
)
∆xi = 245π(x∗

i )
2∆xi.
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We conclude by the Work Done by a Variable Force formula that the work to empty the tank is

W =

∫ 10

0

245πx2(63− x) dx = π

∫ 10

0

(21735x2 − 245x) dx = π

[
7245x3 − 245x2

2

]10
0

= 4532500π J.

Example 3.5.17. Consider a spherical tank with a radius of 3 meters. Given that the density of

maple syrup is 1043 kg/m3, let us compute the work done against the force of gravity to pump

orange soda out of the tank through a spout located 5 meters above the tank. Consider a point x

along the height of the tank such that x = 0 is perpendicular with the center of the tank so that

x = −3 is located at the bottom of the tank and x = 3 is located at the top of the tank. Each layer

of orange soda at a height of x∗
i meters must travel a total distance of 3−x∗

i meters to reach the top

of the tank; then, the layer must travel a distance of 5 meters through the spout. Consequently, a

layer of orange soda at height x∗
i must travel a distance of 8− x∗

i meters. We are performing work

against the force of gravity, so our force function is given by

F (x∗
i ) = 9.8m(x∗

i )

for the mass m(x∗
i ) of orange soda at height x∗

i ; the mass of orange soda at height x∗
i is given by

m(x∗
i ) = 1043v(x∗

i )

for the volume v(x∗
i ) of orange soda at height x∗

i ; and this volume of orange soda is given by

v(x∗
i ) = a(x∗

i )∆xi

for the cross-sectional area of a layer of orange soda at height x∗
i of thickness ∆xi. Each cross section

of the spherical tank is a circle of radius r(x∗
i ), hence the cross-sectional area at height x∗

i is

a(x∗
i ) = π[r(x∗

i )]
2.

We use the Pythagorean Theorem to determine the radius r(x∗
i ) of a layer of orange soda at height

x∗
i . Extend a line segment from the center of the spherical tank to the boundary of the tank:

explicitly, by drawing a line of length x from the center of the tank to our layer at height x, we

form a right triangle with hypotenuse of length 3, height of length x, and base of length r(x).
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Consequently, by the Pythagorean Theorem, we have that x2+[r(x)]2 = 32 so that [r(x)]2 = 9−x2.

Putting this all together, we find the work function that we must subsequently integrate.

Wi = (9.8)(1043)[π(9− (x∗
i )

2)]∆xi = 10221.4π(9− (x∗
i )

2)∆x

We conclude by the Work Done by a Variable Force formula that the work to empty the tank is

W =

∫ 3

−3

10221.4π(9− x2) dx = 10221.4π

[
9x− x3

3

]3
−3

= 367970.4π.



Chapter 4

Parametrization and Polar Coordinates

4.1 Parametric Equations

Consider a dust particle floating through space. We can track the location of the particle in the xy-

plane at time t by recording its position x(t) in the east-west direction and y(t) in the north-south

direction. Combined, these two position functions uniquely determine the location of the particle

in the xy-plane. We may refer to the variable t as the (time) parameter and to the collection of

all points C = {(x(t), y(t)) | t ≥ 0} as the parametric curve defined by x = x(t) and y = y(t).

Graphically, the parametric curve C is the path in the xy-plane travelled by the dust particle as it

moves through space. Each of the functions x(t) and y(t) is called a parametric equation, and

we refer to the ordered pair (x, y) = (x(t), y(t)) as a parametrization of x and y in terms of t.

Example 4.1.1. One of the most formative experiences from my childhood was to watch a samara

(better known as a “helicopter seed,” “whirigig,” or “spinning Jenny”) fall from a tree. I always

found it truly fascinating how they drift down in a manner such that the tip of the winged seed spins

in a circle. Recall that the equation of a circle of radius r > 0 centered at (h, k) in the xy-plane is

(x− h)2 + (y − k)2 = r2.

By setting x(t) = r cos(t) + h and y(t) = r sin(t) + k, the Pythagorean Identity yields that

[x(t)− h]2 + [y(t)− k]2 = [r cos(t)]2 + [r sin(t)]2 = r2 cos2(t) + r2 sin2(t) = r2[cos2(t) + sin2(t)] = r2

is a parametrization of the circle of radius r > 0 centered at (h, k); the parametric equations{
x(t) = r cos(t)− h

y(t) = r sin(t)− k

in terms of our parameter t together completely determine this circle. Back to the example of the

whirigig, if we consider the center of the seed as the origin (0, 0) and the distance to the tip of the

whirigig is r > 0 units, then the position of a point (x, y) on the tip of the “helicopter seed” at time

t can be described by (x, y) = (x(t), y(t)) = (r cos(t), r sin(t)) for some real number r > 0.

Example 4.1.2. Given a real number r > 0, the parametric equations{
x(t) = r sin(t)

y(t) = r cos(t)

75
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with 0 ≤ t ≤ 2π give rise to a circle of radius r centered at the origin (0, 0) in the xy-plane.

(x− 0)2 + (y − 0)2 = [x(t)]2 + [y(t)]2 = r2 sin2(t) + r2 cos2(t) = r2[sin2(t) + cos2(t)] = r2

Observe that as the parameter t increases from the point t = 0 to t = π
2
, the x-coordinate of the

circle increases from x(0) = 0 to x
(
π
2

)
= r and the y-coordinate of the circle decreases from y(0) = r

to y
(
π
2

)
= 0. Consequently, as t increases from t = 0 to t = 2π, we move along the circumference of

the circle in a clockwise fashion. Compare this with the parametrization of the very same circle{
x(t) = r cos(t)

y(t) = r sin(t)

in which the motion from the point t = 0 to t = 2π is counterclockwise around the circle.

Example 4.1.3. We can parametrize the parabola y = x2 on the domain −1 ≤ x ≤ 1 in two ways.

By letting s denote our first parameter so that −1 ≤ s ≤ 1, we have the following parametrization.{
x(s) = s

y(s) = s2

By letting t denote our second parameter so that 0 ≤ t ≤ π, we have the following parametrization.{
x(t) = cos(t)

y(t) = cos2(t)

Observe that the parametrization in s traces the parabola y = x2 from the point (−1, 1) to the

point (1, 1). Compare this with the parametrization in t that traces the curve from (1, 1) to (−1, 1).

We have discussed thus far the process of determining the graph of a plane curve f(x, y) = 0

from a parametrization x = x(t) and y = y(t) of the variables x and y as functions of a parameter

t. Conversely, if we are given a pair of parametric equations x = x(t) and y = y(t), then we can

sometimes determine the underlying plane curve by a process called elimination. Explicitly, the

idea of elimination is to solve (if possible) one of the equations x = x(t) or y = y(t) for the parameter

t and subsequently plug that equation in to the parametric equation for the other variable.

Example 4.1.4. Consider the parametric equations x = t2 − 2t and y = t + 1. By solving for the

parameter t in the equation involving y, we find that t = y−1 so that x = t2−2t = (y−1)2−2(y−1).

Consequently, the plane curve parametrized by these equations is a parabola with horizontal axis of

symmetry (because x is a quadratic function of y). We can be even more specific about the curve

if we find the vertex form of this parabola: observe that x = y2 − 2y + 1− 2y + 2 = y2 − 4y + 3 =

(y − 2)2 − 1, hence this is a parabola in y that opens toward the right and has vertex (2,−1).

Example 4.1.5. Consider the parametric equations x = cos(t) − 2 and y = sin(t) + 3. Observe

that x+ 2 = cos(t) and y − 3 = sin(t), hence by the Pythagorean Identity, we have that

(x+ 2)2 + (y − 3)2 = cos2(t) + sin2(t) = 1.

Consequently, the plane curve described by these equations is a circle of radius 1 centered at (−2, 3).

https://www.desmos.com/calculator/zkgkbtxb7i
https://www.desmos.com/calculator/giygol05ht
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Example 4.1.6. Consider the parametric equations x = 2 sin(3t) and y = 3 cos(3t). Observe that
x
2
= cos(3t) and y

3
= sin(3t), hence by the Pythagorean Identity, we have that(x

2

)2
+
(y
3

)2
= sin2(t) + cos2(t) = 1.

Consequently, the plane curve parametrized by these equations is an ellipse centered at (0, 0).

Example 4.1.7. Consider the parametric equations x = 3t − 5 and y = 2t + 1. By solving the

equation in x for the parameter t, we find that t = x
3
+ 5

3
so that y = 2t+1 = 2

3
x+ 13

3
. Consequently,

the plane curve parametrized by these equations is a line of slope 2
3
with y-intercept

(
0, 13

3

)
.

Example 4.1.8. Consider the parametric equations x = t3 and y = t2. Observe that if we square x

and cube y, then we have that x2 = t6 = y3, from which it follows that the plane curve parametrized

by these equations is the cuspidal cubic x2 − y3 = 0. We remark that this is an important curve in

algebraic geometry and commutative algebra because of the vertical tangents at t = 0.

Conversely, we might wish to parametrize a plane curve in a variable t over some domain.

Example 4.1.9. Consider the plane curve defined by the equation (x − 1)2 + (y + 2)2 = 9. We

recognize this as a circle of radius 3 centered at the point (1,−2) in the xy-plane. Observe that if{
x = 3 sin(t) + 1 and

y = 3 cos(t)− 2,

then the Pythagorean Identity sin2(t) + cos2(t) = 1 yields that

9 = 9 sin2(t) + 9 cos2(t) = [3 sin2(t) + 1− 1]2 + [3 cos2(t)− 2 + 2]2 = (x− 1)2 + (y + 2)2,

hence the assignments of x = 3 sin(t) + 1 and y = 3 cos(t)− 2 provide a valid parametrization.

Example 4.1.10. Consider the plane curve defined by the equation
x2

25
+

y2

4
= 1. Observe that if{

x = 5 cos(t) and

y = 2 sin(t),

then the Pythagorean Identity sin2(t) + cos2(t) = 1 yields that

1 = cos2(t) + sin2(t) =
(x
5

)2
+
(y
2

)2
=

x2

25
+

y2

4
,

hence the assignments of x = 5 cos(t) and y = 2 sin(t) provide a valid parametrization.

Example 4.1.11. Consider the plane curve defined by the equation x2− y2 = −1. We may rewrite

this as a sum of squares x2 + 1 = y2. By the Pythagorean Identity tan2(t) + 1 = sec2(t), the

assignments of x = tan(t) and y = sec(t) provide a valid parametrization.

Example 4.1.12. Given any plane curve that can be defined by some function y = f(x), we can

obtain a very simple parametrization by setting x = t and noticing that y = f(x) = f(t).

Even if we are not able to untangle the parametric equations x = x(t) and y = y(t) to find a

plane curve f(x, y) = 0, under some mild assumptions about the relationship between x and y, we

are still able to determine important characteristics of the parametric curve by elementary calculus.

https://www.desmos.com/calculator/t5po4l2bqc
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Formula 4.1.13 (Slope of the Tangent Line of a Parametric Curve). Consider any parametric curve

defined by the parametric equations x = x(t) and y = y(t). Given that y = f(x) is a differentiable

function of x and x = x(t) is a differentiable function of the parameter t, then we have that

y′(t) =
dy

dt
=

dy

dx

dx

dt
= f ′(x)x′(t).

Consequently, if x′(t) is nonzero, then the slope of the tangent line to the parametric curve is

f ′(x) =
dy

dx
=

dy
dt
dx
dt

=
y′(t)

x′(t)
.

We note that the proof of the above fact follows directly from the Chain Rule applied to y = f(x(t)).

Example 4.1.14. Consider the parametric curve defined by the parametric equations x(t) = 3t−5

and y(t) = 2t+ 3. By the formula for the Slope of the Tangent Line of a Parametric Curve,

dy

dx
=

y′(t)

x′(t)
=

2

3

implies that the slope of the tangent line to this parametric curve is 2
3
for all real numbers t.

Example 4.1.15. Consider the parametric curve defined by the parametric equations x(t) = t2 +

2t− 1 and y(t) = t− 4. By the formula for the slope of the tangent line of a parametric curve,

dy

dx
=

y′(t)

x′(t)
=

1

2t+ 2

implies that the slope of the tangent line to this parametric curve is 1
2t+2

for all real numbers t such

that 2t + 2 is nonzero. Observe that at t = −1, we have that 2t + 2 = 0, so the curve possesses a

vertical tangent at t = −1 because the denominator of dy
dx

is zero but the numerator is nonzero.

Example 4.1.16. Consider the parametric curve defined by the parametric equations x(t) = sin(t)

and y(t) = cos(t). By the formula for the slope of the tangent line of a parametric curve,

dy

dx
=

y′(t)

x′(t)
=

− sin(t)

cos(t)
= − tan(t)

implies that the slope of the tangent line to this parametric curve is − tan(t) for all real numbers

t such that cos(t) is nonzero. Observe that if sin(t) = 0, then the parametric curve has horizontal

tangent line because the numerator of dy
dx

is zero and the denominator is nonzero. Consequently,

the parametric curve has horizontal tangent lines for all real numbers t = kπ for some integer k.

Conversely, if cos(t) = 0, then the denominator of dy
dx

is zero and the numerator is nonzero, hence

the parametric curve has vertical tangent lines for all real number t = kπ + π
2
for some integer k.

4.2 Polar Coordinates

Cartesian coordinates are constructed from lines and rectangles; alternatively, Cartesian coordinates

are called “rectangular coordinates.” We turn our attention next to a coordinate system that is

constructed from arcs and circles. Explicitly, the polar coordinate system consists of
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(a.) a pole O centered at the origin (0, 0) and

(b.) a polar axis, i.e., a ray extending indefinitely from the pole O in the positive x-direction.

Given any point P in the Cartesian plane, we denote by r the distance from the pole O to the point

P, and we denote by θ the angle subtended by the arc from the polar axis to the line segment OP.

Consequently, we may represent the point P = P (r, θ) as an ordered pair in polar coordinates

by specifying its radial coordinate r and its angular coordinate θ. Below is a diagram.

polar axis

r

O

P (r, θ)

θ

Conventionally, the following identifications are made for points in polar coordinates.

(a.) We have that P (−r, θ) = P (r, θ+π). Put another way, the point P (−r, θ) in polar coordinates

a distance of −r units from the origin at an angle of θ radians from the polar axis is the same

as the point P (r, θ + π) in polar coordinates a distance of r units from the origin at an angle

of θ + π radians from the polar axis. Consequently, we may assume that r is non-negative.

(b.) We have that P (r, θ) = P (r, θ + 2kπ) for any integer k. Put another way, the point in polar

coordinates a distance of r units from the origin at an angle of θ radians from the polar axis

is the same as the point in polar coordinates a distance of r units from the origin at an angle

of θ + 2πk radians from the polar axis for any integer k. Consequently, we may assume our

angular coordinate θ satisfies that 0 ≤ θ < 2π (i.e., it is positive and does not exceed 360◦).

polar axis

r

r

O

P (−r, θ)

P (r, θ + π)

θ

We illustrate in our next example the difference between plotting points in Cartesian coordinates

and plotting points in polar coordinates. Explicitly, in order to plot the point P (r, θ) using polar
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coordinates, one must first determine the distance r from the origin; then, one can plot the point

P (r, θ) by rotating this distance an angle of θ radians from the polar axis. Care should be taken if

r < 0 because in this case, by the aforementioned convention, we use the angle θ + π, instead.

Example 4.2.1. Consider the following points in polar coordinates.

polar axis

P
(
1, 3π

4

)
Q(2, 3π)

R
(
2,−2π

3

)
S
(
−3, 3π

4

)

O

Explicitly, to plot the point Q, we use the convention that (2, 3π) = (2, 3π − 2π) = (2, π); to plot

the point R, we use the convention that
(
2,−2π

3

)
=

(
2,−2π

3
+ 2π

)
=

(
2, 4π

3

)
; and to plot the point

S, we use the convention that
(
−3, 3π

4

)
=

(
3, 3π

4
+ π

)
=

(
3, 7π

4

)
.

Crucially, the following illuminates the relationship between Cartesian and polar coordinates.

polar axisx

yr

O

P (r, θ)

θ

x = r cos(θ) r =
√
x2 + y2

y = r sin(θ) tan(θ) =
y

x

Explicitly, if we view the radial coordinate r of the point P (r, θ) in polar coordinates as the hy-

potenuse of a right triangle with side of length x adjacent to θ and side of length y opposite to θ,

then it follows that cos(θ) = x
r
so that x = r cos(θ) and sin(θ) = y

r
so that y = r sin(θ). Even more,

by the Pythagorean Theorem, we have that x2 + y2 = r2 so that r =
√

x2 + y2 (because we may

assume that the radial coordinate r is non-negative) and tan(θ) = y
x
so long as x is nonzero.

Formula 4.2.2 (Polar to Cartesian Coordinates Conversion). Given any point (r, θ) in polar coor-

dinates, the corresponding point (x, y) in Cartesian coordinates is given by

x = r cos(θ) and y = r sin(θ).
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Formula 4.2.3 (Cartesian to Polar Coordinates Conversion). Given any point (x, y) in Cartesian

coordinates such that x is nonzero, the corresponding point (r, θ) in polar coordinates is given by

r =
√

x2 + y2 and tan(θ) =
y

x
.

Exercise 4.2.4. Convert the following points in polar coordinates to Cartesian coordinates.

(a.) P
(
2, π

3

)
(b.) Q

(
3, π

2

)
(c.) R

(
2
√
2, 3π

4

)
(d.) S(4, 3π)

Solution. (a.) We have that r = 2 and θ = π
3
, hence the formula for Polar to Cartesian Coordinates

Conversion yields that x = r cos(θ) = (2)
(
1
2

)
= 1 and y = r sin(θ) = (2)

(√
3
2

)
=

√
3.

(b.) We have that r = 3 and θ = π
2
, hence the formula for converting from polar to Cartesian

coordinates yields that x = r cos(θ) = (3)(0) = 0 and y = r sin(θ) = (3)(1) = 3.

(c.) We have that r = 2
√
2 and θ = 3π

4
, hence the formula for converting from polar to Cartesian

coordinates yields that x = r cos(θ) =
(
2
√
2
)(

−
√
2
2

)
= −2 and y = r sin(θ) =

(
2
√
2
)(√

2
2

)
= 2.

(d.) We have that r = 4 and θ = 3π, hence the formula for converting from polar to Cartesian

coordinates yields that x = r cos(θ) = (4)(−1) = −4 and y = r sin(θ) = (4)(0) = 0. ⋄

Exercise 4.2.5. Convert the following points in Cartesian coordinates to polar coordinates.

(a.) P (1, 1) (b.) Q
(
2
√
3,−2

)
(c.) R(−2, 3) (d.) S(0,−1) (e.) T (−2, 0)

Solution. (a.) We have that x = 1 and y = 1, hence the formula for Cartesian to Polar Coordinates

Conversion yields that r =
√

x2 + y2 =
√
2 and tan(θ) = y

x
= 1. Considering that (x, y) lies in

Quadrant I and tan(θ) = 1, we conclude that θ = π
4
.

(b.) We have that x = 2
√
3 and y = −2, hence the formula for converting from Cartesian to

polar coordinates yields that r =
√

x2 + y2 =
√
12 + 4 = 4 and tan(θ) = y

x
= −

√
3
3
. Considering

that (x, y) lies in Quadrant IV and tan(θ) = −
√
3
3
, we conclude that θ = 11π

6
.

(c.) We have that x = −2 and y = 3, hence the formula for converting from Cartesian to polar

coordinates yields that r =
√

x2 + y2 =
√
13 and tan(θ) = y

x
= −3

2
. Considering that (x, y) lies in

Quadrant II and tan(θ) = −3
2
, we conclude that θ = arctan

(
−3

2

)
+ π.

(d.) We have that x = 0 and y = −1, hence we cannot use the formula for converting from

Cartesian to polar coordinates because x is zero; however, observe that (0,−1) is the point on the

unit circle that lies at an angle θ = 3π
2
, hence in polar coordinates, we have that S(0,−1) =

(
1, 3π

2

)
.

(e.) We have that x = −2 and y = 0, hence the formula for converting from Cartesian to polar

coordinates yields that r =
√

x2 + y2 =
√
2 and tan(θ) = y

x
= 0 so that θ = π because x < 0. ⋄

Often, in polar coordinates, we consider functions r = f(θ) of the radial coordinate r in terms of

the angular coordinate θ. By using the formula for converting from Cartesian to polar coordinates,

we can occasionally derive an equation in Cartesian coordinates for a given polar curve r = f(θ).

Example 4.2.6. Consider the polar curve r = 2. Observe that x2 + y2 = r2 = 4, hence the polar

curve r = 2 is a circle of radius 2 centered at the origin in polar coordinates.

Example 4.2.7. Consider the polar curve θ = π
4
. Observe that y = tan(θ)x = tan

(
π
4

)
x = x, hence

θ = π
4
is the line through the origin in polar coordinates that forms a 45◦ angle with the polar axis.
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Consider a function r = f(θ) of the radial coordinate r in terms of the angular coordinate θ in

polar coordinates. By the formula for Polar to Cartesian Coordinates Conversion, we have that{
x(θ) = r cos(θ) = f(θ) cos(θ) and

y(θ) = r sin(θ) = f(θ) sin(θ)

is a parametrization of x and y in terms of the parameter θ. By the formula for the Slope of the

Tangent Line of a Parametric Curve, the slope of the tangent line to the polar curve r = f(θ) is

dy

dx
=

dy
dθ
dx
dθ

=
y′(θ)

x′(θ)
=

f ′(θ) cos(θ)− f(θ) sin(θ)

f ′(θ) sin(θ) + f(θ) cos(θ)

provided that x′(θ) is nonzero. Like before, the polar curve r = f(θ) has horizontal tangents when

y′(θ) = 0 and x′(θ) is nonzero and vertical tangents when x′(θ) = 0 and y′(θ) is nonzero.

Example 4.2.8. Consider the polar curve r = 1 + sin(θ). Observe that

x(θ) = r cos(θ) = cos(θ) + sin(θ) cos(θ) and

y(θ) = r sin(θ) = sin(θ) + sin2(θ)

together yield that the slope of the polar curve in question is

dy

dx
=

y′(θ)

x′(θ)
=

cos(θ) + 2 sin(θ) cos(θ)

− sin(θ)− sin2(θ) + cos2(θ)
=

cos(θ) + 2 sin(θ) cos(θ)

1− sin(θ)− 2 sin2(θ)

by the Pythagorean Identity cos2(θ) = 1− sin2(θ). Let us find all values of θ in [0, 2π] such that the

tangent line to the given polar curve is vertical or horizontal. We achieve this by determining the

values of θ for which one (but not both) of the functions in the denominator or numerator of dy
dx

is

zero. By setting u = sin(θ), the denominator of dy
dx

is zero if and only if 1− u− 2u2 = 0 if and only

if 2u2+u−1 = 0 if and only if (2u−1)(u+1) = 0 if and only if u = 1
2
or u = −1. Consequently, the

values of θ in [0, 2π] for which x′(θ) = 0 are θ = π
6
, 5π

6
, and 3π

2
. Likewise, we have that y′(θ) = 0 if

and only if cos(θ) + 2 sin(θ) cos(θ) = 0 if and only if cos(θ)(1 + sin(θ)) = 0 if and only if cos(θ) = 0

or 1 + 2 sin(θ) = 0 if and only if cos(θ) = 0 or sin(θ) = −1
2
if and only if θ = π

2
, 7π

6
, 3π

2
, or 11π

6
.

Excluding the case that y′(θ) = x′(θ) = 0, we conclude that r = 1 + sin(θ) has vertical tangents

when θ = π
2
, 7π

6
, and 11π

6
and horizontal tangents when θ = π

6
and θ = 5π

6
.

Exercise 4.2.9. Compute the slope of the tangent line to any point on the polar curve r = 2 sin(θ)

with 0 ≤ θ ≤ 2π; then, use this to determine all points with vertical or horizontal tangents.

Example 4.2.10. Compute the slope of the tangent line to any point on the polar curve r = cos(2θ)

with 0 ≤ θ ≤ 2π; then, use this to determine all points with vertical or horizontal tangents.

Solution. We must first realize the polar curve as a parametric curve in the parameter θ. We achieve

this via the Polar Coordinates to Cartesian Coordinates Conversion

x(θ) = r cos(θ) = cos(θ) cos(2θ) and

y(θ) = r sin(θ) = sin(θ) cos(2θ).

https://www.desmos.com/calculator/ynqm3fhhuw
https://www.desmos.com/calculator/hrhqcjq0zg
https://www.desmos.com/calculator/qw5b7cx9zb
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By the formula for the Slope of the Tangent Line of a Parametric Curve, we have that

dy

dx
=

dy
dθ
dx
dθ

=
y′(θ)

x′(θ)
=

− sin(θ) cos(2θ)− 2 cos(θ) sin(2θ)

cos(θ) cos(2θ)− 2 cos(θ) sin(2θ)
.

We obtain the points on the polar curve with vertical tangent line by finding all θ-values for which the

numerator is zero and the denominator is nonzero (and vice-versa for the points on the polar curve

with horizontal tangent line). Consequently, we must solve the following trigonometric equations.

y′(θ) = 0

− sin(θ) cos(2θ)− 2 cos(θ) sin(2θ) = 0

− sin(θ) cos(2θ)− 2 sin(θ) cos2(θ) = 0 (sin(2θ) = 2 sin(θ) cos(θ))

− sin(θ)[cos(2θ) + 2 cos2(θ)] = 0

− sin(θ)

[
1

2
+

5

2
cos2(θ)

]
= 0 (cos(2θ) = 1

2
+ 1

2
cos2(θ))

sin(θ) = 0

x′(θ) = 0

cos(θ) cos(2θ)− 2 cos(θ) sin(2θ) = 0

cos(θ)[cos(2θ)− 2 sin(2θ)] = 0

Consequently, we find that y′(θ) = 0 if and only if sin(θ) = 0 if and only if θ = 0, θ = π, or θ = 2π.

Likewise, we find that x′(θ) = 0 if and only if cos(θ) = 0 or cos(2θ) = 2 sin(2θ) if and only if θ = π
2

or θ = 3π
2
or tan(2θ) = 1

2
. One solution of tan(2θ) = 1

2
is θ = 1

2
arctan

(
1
2

)
, hence the general solution

to this equation is θ = 1
2
arctan

(
1
2

)
+ kπ for some integer k. We conclude the following.

(1.) The polar curve r = cos(2θ) has horizontal tangents if and only if θ = 0, π, or 2π.

(2.) The polar curve r = cos(2θ) has vertical tangents if and only if θ = π
2
, 3π

2
, or 1

2
arctan

(
1
2

)
+ kπ

for some integer k. By taking k small enough, we can ensure θ satisfies that 0 ≤ θ ≤ 2π. ⋄

One of the most important reasons to care about polar coordinates is the notion of integration

in polar coordinates. Essentially, the idea is that some curves in Cartesian coordinates can be more

easily described in polar coordinates. Certainly, this is reasonable because Cartesian coordinates

are designed to handle rectilinear curves, whereas polar coordinates are built from arcs and circles.

Consequently, if we can parametrize a plane curve via some polar function r = f(θ), then it would
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be most natural to to find the area bounded by the parametric curve in polar coordinates as opposed

to Cartesian coordinates. We note toward this end that for any polar curve r = f(θ) for which

the radial coordinate r is a continuous function of the angular coordinate θ in polar coordinates for

some real numbers a and b such that a ≤ θ ≤ b, we can partition [a, b] by choosing real numbers

a = θ0 < θ1 < θ2 < · · · < θn = b with ∆θi = θi − θi−1 for each integer 1 ≤ i ≤ n. Choosing

sample points θ∗i such that θi−1 ≤ θ∗i ≤ θi for each integer 1 ≤ i ≤ n and θ∗1 < θ∗2 < · · · < θ∗n, we

can approximate the area bounded by r = f(θ) and the polar axis using n sectors. Explicitly, each

sector is subtended by an angle ∆θi and possesses a radius of r = f(θ∗i ), hence the area of each

sector is a(θ∗i ) =
1
2
[f(θ∗i )]∆θi. Consequently, if we sum the area of these sectors, we obtain that

area bounded by the polar curve f(θ) and the polar axis from a to b ≈
n∑

i=1

1

2
[f(θ∗i )]

2∆θi.

By recognizing this as a Riemann sum and taking the limit as n approaches ∞, we conclude that

area bounded by the polar curve f(θ) and the polar axis from a to b =

∫ b

a

1

2
[f(θ)]2 dθ.

Formula 4.2.11 (Area Bounded by Polar Curves). Given any region R in polar coordinates that

is bounded by any continuous polar curve r = f(θ) and any pair of rays θ = a and θ = b for any

real numbers a and b such that 0 ≤ b− a ≤ 2π, then area of R is given by the definite integral

area(R) =
1

2

∫ b

a

[f(θ)]2 dθ.

Particularly, if r = g(θ) is any continuous polar curve such that f(θ) ≥ g(θ) for all real numbers θ

such that a ≤ θ ≤ b, then the area of the region R bounded by f(θ), g(θ), θ = a, and θ = b is

area(R) =
1

2

∫ b

a

([f(θ)]2 − [g(θ)]2) dθ.

Example 4.2.12. We will compute in this example the area bounded by the polar curve below.

r = 1 + cos(θ)

We begin by determining the rays θ = a and θ = b that bound the region in question. Observe that as

θ ranges from θ = 0 to θ = π, the curve r = f(θ) = 1+cos(θ) is traced out counterclockwise from the

point (2, 0) to the point (0, π): indeed, we have that f(0) = 1+ cos(0) = 2, f
(
π
2

)
= 1+ cos

(
π
2

)
= 1,

and f(π) = 1+cos(π) = 0 so that the points (2, 0),
(
1, π

2

)
, and (0, π) lie on the curve. By definition

https://www.desmos.com/calculator/dyqfujvsad
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of polar coordinates, the vertical axis pictured above corresponds to the ray θ = π
2
, and the left-

hand side of the polar axis corresponds to the ray θ = π. Consequently, the region R in question is

bounded by f(θ) = 1 + cos(θ) for all real numbers θ such that π
2
≤ θ ≤ π. We conclude that

area(R) =
1

2

∫ π

π/2

[1 + cos(θ)]2 dθ =
1

2

∫ π

π/2

[1 + 2 cos(θ) + cos2(θ)] dθ

=
1

2

∫ π

π/2

[
3

2
+ 2 cos(θ) +

1

2
cos(2θ)

]
dθ

=
1

2

[
3

2
θ + 2 sin(θ) +

1

4
sin(2θ)

]π
π/2

=
3π

8
− 1.

Example 4.2.13. We will compute in this example the area bounded by the polar curve below.

r = cos(2θ)

By symmetry, it suffices to compute the area bounded by one leaf of the above four-leaf clover.

We begin by determining the rays θ = a and θ = b that bound the right-hand leaf. Observe that

as θ ranges from θ = −π
4
to θ = π

4
, the curve r = f(θ) = cos(2θ) is traced out counterclockwise

from the point
(
0,−π

4

)
to the point (1, 0) and finally to the point

(
0, π

4

)
: indeed, we have that

f
(
−π

4

)
= cos

(
−π

2

)
= 0, f(0) = cos(0) = 1, and f

(
π
4

)
= cos

(
π
2

)
= 0 so that the points

(
0,−π

4

)
,

(1, 0), and
(
0, π

4

)
lie on the curve. Even more, the right-hand leaf is bounded by f(θ) = cos(2θ) for

all real numbers θ such that −π
4
≤ θ ≤ π

4
. We conclude that the area of one leaf is given by

1

2

∫ π/4

−π/4

cos2(2θ) dθ =
1

2

∫ π/4

−π/4

[
1

2
+

1

2
cos(4θ)

]
dθ =

1

4

[
θ +

1

4
sin(4θ)

]π/4
−π/4

=
π

8
.

Each of the four leaves of the clover has area π
8
, hence the total area bounded by the curve is π

2
.

Exercise 4.2.14. Compute the area bounded by the polar curve r = f(θ) pictured below.

r = 2 cos(θ)− 1

https://www.desmos.com/calculator/aqwt4morwh


86 CHAPTER 4. PARAMETRIZATION AND POLAR COORDINATES

Example 4.2.15. We will compute in this example the area bounded by the polar curves below.

r = θ

r = 1− cos(θ)

Considering that the shaded region R is bounded by the polar curves f(θ) = θ, g(θ) = 1− cos(θ),

θ = a, and θ = b for some real numbers 0 ≤ a ≤ b ≤ 2π and f(θ) ≥ g(θ) for all real numbers θ ≥ 0,

by the formula for Area Bounded by Polar Curves, it suffices to determine the real numbers a and

b. Certainly, as θ ranges from θ = 0 to θ = π, the curve r = f(θ) = θ is traced out counterclockwise

from the point (0, 0) to the point (θ, θ). Likewise, the curve r = g(θ) = 1 − cos(θ) is traced out

counterclockwise from the point (0, 0) to the point (π, 2) since we have that g(0) = 1− cos(0) = 0

and g(π) = 1− cos(π) = 2. We conclude that the area of the shaded region R is given by

area(R) =
1

2

∫ π

0

(θ2 − [1− cos(θ)]2) dθ

=
1

2

∫ π

0

[θ2 − 1 + 2 cos(θ)− cos2(θ)] dθ

=
1

2

∫ π

0

[
θ2 − 3

2
+ 2 cos(θ)− 1

2
cos(2θ)

]
dθ

=
1

2

[
θ3

3
− 3

2
θ + 2 sin(θ)− 1

4
sin(2θ)

]π
0

=
π3

6
− 3π

4

Exercise 4.2.16. Compute the area bounded by the polar curves r = f(θ) pictured below.

r = sin(θ)

r = cos(θ)

https://www.desmos.com/calculator/ebugj3g7sz


Chapter 5

Sequences and Series

5.1 Sequences

One of the main focuses of any Calculus II course is to understand sequences and series. Unwittingly,

we have all encountered sequences in our lives at some point: if you have ever counted while holding

your breath, then you have recited a sequence; if you have ever attempted to memorize some of the

digits in the decimal expansion of π, then you have attempted to memorize a sequence; or if you have

ever entered a telephone number to place a call, then you have a sequence entered into your phone.

Basically, a sequence is an ordered list of objects. Put more precisely, a sequence is an ordered list

{an}kn=1 of k objects a1, a2, . . . , ak, where k is a positive integer (or whole number). We use the

subscript n as an index so that the symbol an is the nth object that appears in the sequence. We

will typically consider sequences of real numbers that start with n = 0, but it is possible to think

about sequences that begin with any non-negative (or even negative!) whole number index.

Unfortunately, the digits of a telephone number are often quite random, and there is no formula

for the nth digit in the decimal expansion of π, so it is impossible to come up with formulas for

these sequences; however, there are plenty of sequences for which the nth term is formulaic.

Example 5.1.1. Consider the natural numbers N that are obtained by counting up from 1,

adding 1 each time. We can list these sequentially as 1, 2, 3, . . . , n, . . . , hence the infinite sequence

{n}∞n=1 = lim
k→∞

{n}kn=1 = lim
k→∞

{1, 2, 3, . . . , k} = {1, 2, 3, . . . , n, . . .}

consists of all natural numbers. We could also write this sequence as an = n for each integer n ≥ 1.

Our interest lies in sequences (finite or infinite) for which there exists a real function f(x) such

that an = f(n) for all elements n of some index set N consisting of non-negative whole numbers.

We refer to the function f(x) such that an = f(n) for all indices n as the closed form of the

sequence an, or we may alternatively say that f(n) is a closed-form expression for an. Certainly,

the benefit of obtaining a closed-form expression for a sequence an of real numbers is that if we

wish to determine a0, a1, or a2, then it suffices to compute f(0), f(1), or f(2), respectively.

Example 5.1.2. Consider the infinite sequence that begins 1,−1, 1,−1, . . . . Observe that the nth

term an is obtained from the previous term an−1 by multiplying by −1. Consequently, we have that

an = (−1)an−1 = (−1)2an−2 = · · · = (−1)na0.

87
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Considering that a0 = 1, we conclude that an = (−1)n for all integers n ≥ 0.

Example 5.1.3. Consider the infinite sequence that begins 1, 1
2
, 1
4
, 1
8
, . . . . Observe that in order to

move from one term of the sequence to the next, we divide by 2. Consequently, the relationship

between consecutive terms of the sequence is given by an = an−1

2
. By repeating this, we find that

an =
1

2
an−1 =

(
1

2

)2
an−2 = · · · =

(
1

2

)n
a0.

Considering that a0 = 1, we conclude that an =
(
1
2

)n
for all integers n ≥ 0.

One can define a sequence recursively by providing a formula an = f(a0, a1, . . . , an−1) for the

nth term of the sequence in terms of some of the preceding terms of the sequence.

Example 5.1.4. Observe that an = n is a recursive sequence defined by an = an−1 + 1 for all n.

Example 5.1.5. Consider the recursive sequence defined by an = nan−1 for all integers n ≥ 0. By

repeatedly applying the recursive definition of an, we find that

an = nan−1 = n(n− 1)an−2 = n(n− 1)(n− 2)an−3 = · · · = n(n− 1)(n− 2) · · · (n− k + 1)an−k.

Consequently, if we assume that n ≥ 0 and a0 = 1, then we obtain that

an = n(n− 1)(n− 2) · · · 2 · 1 · a0 = n(n− 1) · · · 2 · 1.

We refer to this recursive sequence as n-factorial, and we write n! = n(n− 1)(n− 2) · · · 2 · 1.
Example 5.1.6. Consider the recursive sequence an = 2an−1 defined for each integer n ≥ 1 with

a0 = 1. By repeatedly substituting the recursive formula for an, we obtain that

an = 2an−1 = 22an−2 = · · · = 2na0.

Considering that a0 = 1, we conclude that an = 2n for all integers n ≥ 0.

Example 5.1.7. Curiously enough, even the most simple-looking recursive sequences can admit

surprisingly complicated closed forms. Consider the famed Fibonacci sequence an = an−1 + an−2

for each integer n ≥ 2 with a0 = 0 and a1 = 1. One can prove that the closed form for this is

an = f(n) =
(−1)n−1ϕ−n + ϕn

√
5

for the Golden Ratio ϕ =
1 +

√
5

2
.

Computing closed forms for recursive sequences is crucial in the field of computer science, and a

rigorous treatment of the subject is often supplied in any course on numerical analysis, but we will

try to consider recursive sequences with an understanding of our limitations in this course.

Given a sequence an for some index set N that consists of positive whole numbers, we can always

“reindex” the sequence so that it is defined for each integer n ≥ 1, so we will assume henceforth that

our sequences are all of the form {an}∞n=1. We say that the sequence {an}∞n=1 converges if there

exists some real number L such that for every real number ε > 0, there exists a positive integer m

with the property that |an − L| < ε whenever we have that n ≥ m. Put another way, the quantity

L can be made arbitrarily close to the value of an by taking n to be sufficiently large. Given that

no such real number L exists, we say that {an}∞n=1 diverges. Further, if the terms of an increase

(or decrease) without bound, then an diverges to infinity (or negative infinity).

https://en.wikipedia.org/wiki/Golden_ratio
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Example 5.1.8. Consider the sequence an = 1
n
for all integers n ≥ 1. Observe that as n grows

arbitrarily large, its reciprocal 1
n
becomes arbitrarily close to 0. Consequently, we suspect that

lim
n→∞

1

n
= 0.

Let us prove this by definition. Given any real number ε > 0, we want to find a positive integer m

such that whenever n ≥ m, we have that
∣∣ 1
n

∣∣ < ε. Considering that n ≥ 1, we have that 1
n
> 0 so

that
∣∣ 1
n

∣∣ = 1
n
. We can ensure that 1

n
< ε by taking n > 1

ε
, hence our choice for M is quite intuitive:

we should simply take M = 1
ε
. Unravelling this thought process gives a formal proof.

Proof. We claim that lim
n→∞

1
n
= 0. Given any real number ε > 0, if we have that n > M = 1

ε
, then∣∣∣∣ 1n

∣∣∣∣ = 1

n
<

1

M
=

1
1
ε

= ε.

By definition, the limit of an infinite sequence an depends only on the values that an takes for

sufficiently large indices n. Given some arbitrarily large (but fixed) positive integer m, we refer to

the values of an for all indices n ≥ m as the m-tail of the sequence an. Consequently, the limit

of an infinite sequence depends only on the m-tail of an, and as such, it will not be altered if we

change (or omit) finitely many terms — namely, all of those terms an for which n ≤ m. Further, if

there exists a real number C such that an = C for all indices n ≥ m, then lim
n→∞

an = C.

Other than the Fibonacci sequence, we have studied (and will primarily study) only sequences

{an}∞n=1 with a closed form, i.e., infinite sequences for which there exists a function f(n) such that

an = f(n) for each integer n ≥ 1. Consequently, we can think about sequences as functions whose

domains have been restricted to the positive whole numbers. Using the tools that we have from

Calculus I — limits, derivatives, L’Hôpital’s Rule, etc. — we can better understand sequences with

closed forms in terms of the functions that define them. Particularly, the following holds.

Proposition 5.1.9 (Limit of a Sequence with a Closed Form). Given any sequence of real numbers

an such that there exists a real function f(x) with an = f(n) for all sufficiently large integers n,

lim
n→∞

an = lim
x→∞

f(x).

Proof. Compare the definitions to see that this is true. Explicitly, if there exists a real number

L such that lim
x→∞

f(x) = L, then by definition, given a real number ε > 0, there exists a positive

integer M such that |f(x) − L| < ε for all real numbers x > M. But if this is true for all real

numbers x > M, then it is certainly true for all positive whole numbers n > M so that lim
n→∞

an = L.

Use the analogous argument in the case that lim
x→∞

f(x) = ±∞ to show that lim
n→∞

an = ±∞.

Exercise 5.1.10. Compute the limit of the sequence an =
1

2n
, or prove that it does not exist.

Solution. Considering that an = f(n) =
1

2n
, it follows by Proposition 5.1.9 that

lim
n→∞

an = lim
n→∞

1

2n
= lim

x→∞

1

2x
= 0. ⋄
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Exercise 5.1.11. Compute the limit of the sequence an = (−1)n, or prove that it does not exist.

Proof. Observe that an = (−1)n diverges: if n is even, then an = 1 because −1 to an even power is

1. On the other hand, if n is odd, then an = −1 because −1 to an odd power is −1. Consequently,

there is no real number L arbitrarily close to an for all sufficiently large integers n.

Exercise 5.1.12. Compute the limit of the sequence an =
ln(n)

n
, or prove that it does not exist.

Exercise 5.1.13. Compute the limit of the sequence an =
n5 + 3n2 + 1

3n4 + n+ 1
, or prove it does not exist.

Given any real number c and any nonzero real number r, we refer to any sequence of the form

an = crn as a geometric sequence. Observe that if r = 1, then rn = 1 so that an = crn = c is a

constant sequence, hence every constant sequence is geometric. Crucially, a nonzero sequence an of

real numbers is geometric if and only if the ratio of consecutive terms of the sequence satisfy that

an
an−1

= r

for some nonzero real number r. Observe that if the above identity holds, then we have that

an = ran−1 = r2an−2 = · · · = rna0.

Consequently, the 0th term a0 of the geometric sequence is its coefficient a0 = c, and we refer to

the nonzero real number r as the common ratio of the geometric sequence an = crn. Our next

proposition classifies the convergence of geometric sequences based on their common ratio.

Proposition 5.1.14 (Convergence of Geometric Sequences). Given any real number c and any

nonzero real number r, the geometric sequence crn obeys the following rule for convergence.

lim
n→∞

crn =


0 if − 1 < r < 1

c if r = 1

diverges if r > 1 or r ≤ −1

Proof. Consider the real function f(x) = crx. Observe that f(n) = crn for each integer n ≥ 0, hence

lim
n→∞

crn = lim
x→∞

f(x) = lim
x→∞

crx = c
(
lim
x→∞

rx
)
.

We will assume first that r > 0 so that rx > 0 for all real numbers x. Consequently, the real number

ln(rx) satisfies that rx = eln(r
x) = ex ln(r). Observe that if r < 1, then ln(r) < 0 so that t = x ln(r) < 0

for all real numbers x > 0. Even more, as x approaches ∞, we have that t approaches −∞, hence

lim
n→∞

crn = c
(
lim
x→∞

rx
)
= c

(
lim
x→∞

ex ln(r)
)
= c

(
lim

t→−∞
et
)

= 0.

Conversely, if r > 1, then ln(r) > 0 so that x ln(r) > 0 for all real numbers x > 0. We conclude that

lim
n→∞

crn = c
(
lim
x→∞

rx
)
= c

(
lim
x→∞

ex ln(r)
)
= c

(
lim
t→∞

et
)
= ∞.

Observe that if −1 < r < 0, then 0 < |r| < 1. By Proposition 5.1.21, the geometric sequence crn

converges to 0. Conversely, if r ≤ −1, then −r ≥ 1, hence the sequence crn = c(−1)n(−r)n diverges

because it takes both positive and negative values for infinitely many integers n ≥ 0.
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Exercise 5.1.15. Explain whether each of the following sequences is geometric; if so, compute the

coefficient c and the common ratio r; and determine with justification if an converges or diverges.

(a.) an = 32−3n

(b.) 6,−3, 3
2
,−3

4
, . . .

(c.) an = (−1)n

(d.) −1, 2,−3, 4, . . .

(e.) an = ln(e2πn)

(f.) 2
3
,−2

9
,− 2

27
, 2
81
, . . .

(g.) an = sin(πn)

(h.) 3, 6, 9, 12, . . .

Solution. (a.) By simplifying the expression 33−2n, we find that

an = 32−3n = (32)(3−3n) =
9

33n
=

9

27n
= 9

(
1

27

)n
.

Consequently, the sequence is geometric with coefficient c = 9 and common ratio r = 1
27
. Considering

that −1 < r < 1, we conclude by Proposition 5.1.14 that an = 32−3n converges.

(b.) Observe that the ratios of successive terms is constant and satisfies that

−3

6
=

3
2

−3
=

−3
4

3
2

= −1

2
.

Consequently, the sequence is geometric with common ratio r = −1
2
and coefficient c = 6. Consid-

ering that −1 < r < 1, we conclude by the above proposition that the sequence converges. ⋄

Considering that the definition of the limit of a sequence is closely related to the definition of

the limit of a function at ±∞, it is not surprising that the familiar limit laws holds for sequences.

Proposition 5.1.16 (Limit Laws for Sequences). Given any pair of convergent infinite sequences

of real numbers an and bn, the following limit properties hold.

(i.) (Additive Property of Limits) Limits distribute across sums and differences.

lim
n→∞

(an ± bn) =
(
lim
n→∞

an

)
±
(
lim
n→∞

bn

)
(ii.) (Multiplicative Property of Limits) Limits distribute across products.

lim
n→∞

(anbn) =
(
lim
n→∞

an

)(
lim
n→∞

bn

)
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(iii.) (Quotient Property of Limits) Limits distribute across quotients if lim
n→∞

bn is nonzero.

lim
n→∞

an
bn

=
lim
n→∞

an

lim
n→∞

bn

Likewise, we point out the following analog of the Squeeze Theorem from Calculus I.

Proposition 5.1.17 (Squeeze Theorem for Sequences). Given any infinite sequences of real num-

bers an, bn, and cn satisfying that

(1.) bn and cn are convergent with lim
n→∞

bn = lim
n→∞

cn and

(2.) bn ≤ an ≤ cn for all sufficiently large integers n,

the sequence an is convergent with lim
n→∞

an = lim
n→∞

bn = lim
n→∞

cn.

Exercise 5.1.18. Compute the limit of the sequence an =
(−1)n

n
.

Solution. Observe that −1 ≤ (−1)n ≤ 1 for all integers n ≥ 1, hence we have that

− 1

n
≤ (−1)n

n
≤ 1

n

for all integers n ≥ 1. By the Squeeze Theorem for Sequences, we conclude that lim
n→∞

an = 0. ⋄

Exercise 5.1.19. Compute the limit of the sequence an =
sin(n)

n
.

Solution. Observe that −1 ≤ sin(n) ≤ 1 for all integers n ≥ 0, hence we have that

− 1

n
≤ sin(n)

n
≤ 1

n

for all integers n ≥ 0. By the Squeeze Theorem for Sequences, we conclude that lim
n→∞

an = 0. ⋄

Exercise 5.1.20. Compute the limit of the sequence an =
(−2)n + 2n

3n
.

Solution. Observe that 0 ≤ (−2)n + 2n ≤ 2n+1 for all integers n ≥ 0. Explicitly, if n is even, then

(−2)n + 2n = 2n + 2n = 2 · 2n = 2n+1. Likewise, if n is odd, then (−2)n + 2n = −(2n) + 2n = 0.

Consequently, by dividing each expression in this inequality by 3n, we find that

0 ≤ (−2)n + 2n

3n
≤ 2n+1

3n

for all integers n ≥ 0. Considering that the upper bound of this inequality

2n+1

3n
=

2(2n)

3n
= 2

(
2n

3n

)
= 2

(
2

3

)n
is a convergent geometric sequence, we conclude by the Squeeze Theorem that lim

n→∞
an = 0. ⋄
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Proposition 5.1.21 (Convergence to Zero in Absolute Value Implies Convergence to Zero). Given

any infinite sequence of real numbers an, if lim
n→∞

|an| = 0, then lim
n→∞

an = 0.

Proof. By definition of the absolute value function, we have that |an| = −an if an < 0 and |an| = an
if an ≥ 0. Consequently, we find that −|an| ≤ an ≤ |an| for all integers n ≥ 0. Considering that

lim
n→∞

|an| = 0 by hypothesis, the Squeeze Theorem for Sequences ensures that lim
n→∞

an = 0.

Proposition 5.1.22 (Convergence of Exponential by Factorial). Given any real number r, we have

lim
n→∞

rn

n!
= 0.

Proof. By Proposition 5.1.21, it suffices to prove that

lim
n→∞

|r|n

n!
= lim

n→∞

|rn|
n!

= lim
n→∞

∣∣∣∣rnn!
∣∣∣∣ = 0.

Certainly, this holds if −1 < r < 1 because the numerator is a convergent geometric sequence and

the limit of the denominator is infinity; otherwise, if |r| ≥ 1, then we may find an integer a ≥ 1

such that a ≤ |r| ≤ a+ 1. Consider the nth term of the sequence for any integer n ≥ a+ 2.

|r|n

n!
=

|r| · |r| · · · |r| · |r| · |r| · · · |r| · r
1 · 2 · · · a(a+ 1)(a+ 2) · · · (n− 1)n

=
|r|
1

· |r|
2

· · · |r|
a︸ ︷︷ ︸

Call this C.

· |r|
a+ 1

· |r|
a+ 2

· · · |r|
n− 1︸ ︷︷ ︸

Each factor here is ≤1.

· |r|
n

Consequently, we can bound the sequence at hand below by 0 (because all terms are non-negative),

and we can bounded the sequence above by the product of the red and black terms as follows.

0 ≤ |r|n

n!
≤ C|r|

n

Considering that lim
n→∞

C|r|
n

= 0, the Squeeze Theorem for Sequences ensures that lim
n→∞

|r|n

n!
= 0.

Continuous functions are characterized by the property that for any real number L, we have

lim
x→L

f(x) = f
(
lim
x→L

x
)
= f(L).

Luckily, the same holds for limits of continuous functions of sequences.

Proposition 5.1.23 (Commutative Property of Limits and Continuous Functions). Given any

continuous real function f(x) and any convergent infinite sequence of real numbers an such that

lim
n→∞

an = L, the infinite sequence of real numbers f(an) is convergent, and its limit is given by

lim
n→∞

f(an) = f
(
lim
n→∞

an

)
= f(L).

Exercise 5.1.24. Compute the limit of the sequence an = sin(e−n).

Solution. Observe that lim
n→∞

e−n = lim
n→∞

1
en

= 0. Considering that sin(x) is a continuous function,

the Commutative Property of Limits and Continuous Functions implies that

lim
n→∞

sin(e−n) = sin
(
lim
n→∞

e−n
)
= sin(0) = 0. ⋄
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Exercise 5.1.25. Compute the limit of the sequence an =

√
4 +

1

n
.

Solution. By the Commutative Property of Limits and Continuous Functions, we find that

lim
n→∞

√
4 +

1

n
=

√
lim
n→∞

(
4 +

1

n

)
=

√
4 + lim

n→∞

1

n
=

√
4 = 2. ⋄

Exercise 5.1.26. Compute the limit of the sequence an = arctan

(
cos(n)

n

)
.

By Proposition 5.1.14, the convergence of geometric sequences is fully classified. Consequently,

one naturally wonders if it is in fact possible to classify the convergence of all infinite sequences of

real numbers. Our first step toward that lofty goal is to study sequences that are bounded. We say

that a sequence an is bounded above if there exists a real number M+ such that an ≤ M+ for

all sufficiently large integers n. Likewise, we say that a sequence is bounded below if there exists

a real number M− such that an ≥ M− for all sufficiently large integers n. Combining these two

notions, we say that a sequence is bounded if it is bounded above and bounded below. Conversely,

any sequence that is either not bounded above or not bounded below is said to be unbounded.

Proposition 5.1.27 (Convergent Sequences Are Bounded). Every convergent infinite sequence of

real numbers is bounded. Explicitly, if the sequence an converges, then an must be bounded.

Proof. By definition, if an converges, then there exists a real number L such that lim
n→∞

an = L. By

definition of the limit, there exists a positive real number N such that |an − L| < 1 for all n > N.

Unraveling this gives that L− 1 < an < L+ 1 for all n > N. We can choose M+ to be larger than

a1, a2, . . . , aN and L+ 1 and choose M− to be smaller than a1, a2, . . . , aN and L− 1.

By the contrapositive, Proposition 5.1.27 guarantees that if an is unbounded, then an diverges.

On the other hand, Exercise 5.1.11 provides an example of a bounded but divergent sequences. We

say that a sequence is oscillating if it is takes (at least) two distinct values for infinitely many

indices. Quite generally, every oscillating sequence is divergent — even those that are bounded.

Given that an infinite sequence of real numbers an is (eventually) monotone, then its bounded-

ness is in fact sufficient to conclude its convergence. We say that an is monotone if it is either

increasing or decreasing. Particularly, we say that an is increasing if an+1 ≥ an for all sufficiently

large integers n, and we say that an is decreasing if an+1 ≤ an for all sufficiently large integers

n. By Calculus I, we may recall that a differentiable real function f(x) is increasing if f ′(x) > 0

for all sufficiently large real numbers x and decreasing if f ′(x) < 0 for all sufficiently large real

numbers x. Consequently, it is sometimes possible to determine the increasing or decreasing nature

of a sequence an if it admits a closed form an = f(n) such that f(x) is a differentiable real function.

Proposition 5.1.28 (Criterion for Monotonicity). Given any infinite sequence of real numbers an
such that an = f(n) for some differentiable real function f(x),

(a.) if f ′(x) > 0 for all sufficiently large real numbers x, then an is increasing and

(b.) if f ′(x) < 0 for all sufficiently large real numbers x, then an is decreasing.
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Exercise 5.1.29. Explain whether the sequence an = sin

(
1

n

)
is increasing, decreasing, or neither.

Solution. By the Criterion for Monotonicity, it suffices to check the derivative of the function that

defines an. Observe that an = f(n) for the differentiable real function f(x) = sin
(
1
x

)
with

f ′(x) =
d

dx
sin

(
1

x

)
= cos

(
1

x

)(
− 1

x2

)
= −

cos
(
1
x

)
x2

.

Considering that x2 > 0 and cos
(
1
x

)
> 0 for all real numbers x > 0, we conclude that f ′(x) < 0 for

all real numbers x > 0 so that the sequence an is decreasing. ⋄

Exercise 5.1.30. Explain whether the sequence an = −ne−n2
is increasing, decreasing, or neither.

Solution. Like in Exercise 5.1.29, we may determine if an is increasing or decreasing by checking

the derivative of the differentiable real function f(x) = −xe−x2
such that an = f(n).

f ′(x) =
d

dx

(
−xe−x2

)
= −xe−x2

(−2x)− e−x2

= e−x2

(2x2 − 1)

Considering that e−x2
> 0 and 2x2 − 1 > 0 for all real numbers x ≥ 1, we conclude that f ′(x) > 0

for all real numbers x ≥ 1, hence the sequence an is increasing. ⋄

Exercise 5.1.31. Explain whether the sequence an = cos(πn) is increasing, decreasing, or neither.

Solution. Observe that cos(πn) oscillates between 1 and −1; it is neither increasing nor decreasing.

cos(πn) =

{
1 if n is even

−1 if n is odd
⋄

One of the most important theorems in the study of infinite sequences is the following.

Theorem 5.1.32 (Monotone Convergence Theorem). An infinite sequence of real numbers an that

is increasing or decreasing for all sufficiently large integers n converges if and only it is bounded.

(a.) If an is increasing and bounded above by M+, then an converges and lim
n→∞

an ≤ M+.

(b.) If an is decreasing and bounded below by M−, then an converges and lim
n→∞

an ≥ M−.

Exercise 5.1.33. Compute the limit of the recursive sequence an =
√
2an−1 with a0 =

√
2.

Solution. By plugging in n = 1, we find that a1 =
√
2
√
2 ≥

√
2 = a0, hence we suspect that an is

increasing. We note also that a1 <
√
2, hence we will prove that an is bounded above by 2. Observe

that if an < 2, then an+1 =
√
2an <

√
2 · 2 = 2. By the Principle of Mathematical Induction, we

conclude that an < 2. We turn our attention back to the increasing property of an. We will assume

that an+1 ≥ an. By definition of the sequence and the fact that an+1 < 2, we have that

an+2 =
√

2an+1 >
√

a2n+1 = an+1.
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Consequently, the sequence is increasing and bounded above by 2, hence by the Monotone Conver-

gence Theorem, it follows that there exists a real number L such that

L = lim
n→∞

an+1 = lim
n→∞

√
2an =

√
lim
n→∞

(2an) =

√
2
(
lim
n→∞

an

)
=

√
2L.

By squaring both sides, we find that L2 = 2L so that L2 − 2L = 0 and L(L− 2) = 0. Considering

that an is increasing and bounded below by
√
2, we conclude that L = 2. ⋄

Exercise 5.1.34. Compute the limit of the recursive sequence an =
√
2 + an−1 with a0 =

√
2.

5.2 Basics of Infinite Series

One of the most powerful and important tools in all of mathematics is the infinite series. Countless

applications for series abound in approximation theory, real analysis, complex analysis, combina-

torics, probability, and statistics. Concretely, an infinite series can be used to approximate π (and

many other irrational numbers) to any desired degree of accuracy: we will eventually learn that

π = 4− 4

3
+

4

5
− 4

7
+

4

9
− 4

11
+ · · · .

Of course, we have already familiarized ourselves with finite series: the Riemann sum

n∑
k=0

f(xk)∆xk = f(x0)∆x0 + f(x1)∆x1 + · · ·+ f(xn)∆xn

of the real function f(x) for sequence of points x0, x1, . . . , xn with ∆xk = xk −xk−1 for each integer

1 ≤ k ≤ n is a finite series from integral calculus. We refer to this presentation of the sum as sigma

notation (named for the Greek letter sigma Σ). Certainly, a finite series can be evaluated by simply

adding up all of its terms, hence we are interested in evaluating infinite series (when possible).

We define an infinite series as the limit of the finite sums of its general term an, i.e.,

a0 + a1 + a2 + · · · =
∞∑
k=0

ak = lim
n→∞

n∑
k=0

ak = lim
n→∞

sn.

We call the sequence sn =
∑n

k=0 ak = a0 + a1 + a2 + · · · + an the nth partial sum of the infinite

series. Consequently, an infinite series is the limit of the sequence {sn}∞n=1 of its partial sums.

Example 5.2.1. Consider the following infinite series.

∞∑
k=1

1

k

By definition, the nth partial sum of this series is the finite sum

sn =
n∑

k=1

1

k
= 1 +

1

2
+

1

3
+ · · ·+ 1

n
.
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Example 5.2.2. Consider the following infinite series.

∞∑
k=1

1

k2 + k

By definition, the nth partial sum of this series is the finite sum

sn =
n∑

k=1

1

k2 + k
=

1

2
+

1

6
+

1

12
+ · · ·+ 1

n2 + n
.

By evaluating the first four partial sums explicitly, we can deduce a closed form expression for sn.

s1 =
1

2

s2 =
1

2
+

1

6
=

4

6
=

2

3

s3 =
1

2
+

1

6
+

1

12
=

9

12
=

3

4

s4 =
1

2
+

1

6
+

1

12
+

1

20
=

4

5

sn =
n

n+ 1

Consequently, we can evaluate the infinite series at hand by taking the limit of this sequence.

∞∑
k=1

1

k2 + k
= lim

n→∞

n∑
k=1

1

k2 + k
= lim

n→∞
sn = lim

n→∞

n

n+ 1
= 1

Considering an infinite series as the limit of its sequence of partial sums enables us to apply all

of the techniques of sequences we studied in Section 5.1 to our study of infinite series. Even still,

certain types of infinite series are easier to compute than others. One of these is the telescoping

series whose nth partial sum can be written as sn = C+f(n) for some real number C and some real

function f(x). Consequently, the telescoping series converges if and only if sn = C+ f(n) converges

if and only if f(n) converges, and the value of the telescoping series is equal to

lim
n→∞

sn = lim
n→∞

[C + f(n)] = C + lim
n→∞

f(n).

Example 5.2.3. Consider the following infinite series.

∞∑
k=2

(
1

k
− 1

k + 1

)
By plugging in several values of the index k, we can deduce the value of the series.

∞∑
k=2

(
1

k
− 1

k + 1

)
=

(
1

2
− 1

3

)
︸ ︷︷ ︸
Plug in k=2.

+

(
1

3
− 1

4

)
︸ ︷︷ ︸
Plug in k=3.

+

(
1

4
− 1

5

)
︸ ︷︷ ︸
Plug in k=4.

+

(
1

5
− 1

6

)
︸ ︷︷ ︸
Plug in k=5.

+ · · · = 1

2
.
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Explicitly, each of the terms with colored font will be added to itself with the opposite sign, hence

everything will cancel except the first term of the infinite series. Bearing this in mind, it is clearer

now why such a series is referred to as a telescoping series because a telescope retracts to a point.

Using the technique of partial fraction decomposition from the Partial Fraction Decomposition

Theorem, certain infinite series are revealed to be telescoping. We illustrate as follows.

Example 5.2.4. Consider the following infinite series.

∞∑
k=0

1

k2 + 3k + 2

Observe that k2 + 3k + 2 = (k + 1)(k + 2), hence we seek real numbers A and B such that

1

k2 + 3k + 2
=

A

k + 1
+

B

k + 2
.

Clearing the denominators yields an equation A(k + 2) +B(k + 1) = 1. By plugging in k = −1, we

find that A = 1. By plugging in k = −2, we find that B = −1. Consequently, we have that

∞∑
k=0

1

k2 + 3k + 2
=

∞∑
k=0

(
1

k + 1
− 1

k + 2

)
=

(
1

1
− 1

2

)
︸ ︷︷ ︸
Plug in k=0.

+

(
1

2
− 1

3

)
︸ ︷︷ ︸
Plug in k=1.

+

(
1

3
− 1

4

)
︸ ︷︷ ︸
Plug in k=2.

+ · · · = 1.

Exercise 5.2.5. Compute the value of the infinite series
∞∑
k=1

k

k2 + 5k + 3
, or state that it diverges.

Given any real numbers c and r, the geometric sequence crn gives rise to the geometric series

∞∑
k=0

crk.

Like with Proposition 5.1.14 on geometric sequences, we can completely classify the convergence

geometric series based on the common ratio r: in fact, as the following illustrates, the sequence of

partial sums of a geometric sequence is the sum of a constant sequence and a geometric sequence.

Proposition 5.2.6 (Convergence of Geometric Series). Given any real number c and any nonzero

real number r, the geometric series below obeys the following rule for convergence.

∞∑
k=0

crk =


c

1− r
if − 1 < r < 1

diverges if r ≥ 1 or r ≤ −1

Proof. Certainly, if r = 1, then by the second property of Proposition 2.2.4, we have that

∞∑
k=0

crk =
∞∑
k=0

c = lim
n→∞

n∑
k=0

c = lim
n→∞

nc = c
(
lim
n→∞

n
)
= ∞,

and the geometric series diverges to ∞. On the other hand, if r ̸= 1, then the binomial 1− rn+1 is

divisible by 1− r because (1 + r + · · ·+ rn)(1− r) = 1− rn+1. Consequently, we find that

n∑
k=0

crk = c+ cr + cr2 + · · ·+ crn = c(1 + r + r2 + · · ·+ rn) =
c(1− rn+1)

1− r
.

https://mediahub.ku.edu/media/Daniel+James%27+Personal+Meeting+Room/1_0wrxumhx
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By definition of an infinite series as the limit of a finite sum, we conclude that

∞∑
k=0

crk = lim
n→∞

n∑
k=0

crk = lim
n→∞

c(1− rn+1)

1− r
= lim

n→∞

(
c

1− r
− crn+1

1− r

)
=

c

1− r
− 1

1− r

(
lim
n→∞

crn+1
)

depends on the convergence of the geometric sequence crn+1. By Proposition 5.1.14, the sequence

crn+1 diverges if r > 1 or r < −1, hence the geometric series diverges in either of these cases.

Proposition 5.2.7 (Formula for Convergent Geometric Series). Given any real numbers c and r

such that −1 < r < 1, the following formula gives the value of the convergent geometric series.

∞∑
n=k

crn =
crk

1− r

Proof. By Proposition 5.2.6 and its proof, we have that

∞∑
n=k

crn =
∞∑
n=0

crn −
k−1∑
n=0

crn =
c

1− r
− c(1− rk)

1− r
=

crk

1− r
.

Example 5.2.8. Consider the following infinite series.

∞∑
n=0

1

2n

By rewriting the general termas 1
2n

=
(
1
2

)n
, we find ourselves dealing with a geometric series with

c = 1 and r = 1
2
. By the Formula for Convergent Geometric Series, we conclude that

∞∑
n=0

1

2n
=

∞∑
n=0

(
1

2

)n
=

1

1− 1
2

= 2.

Exercise 5.2.9. Compute the value of the infinite series
∞∑
n=0

(
−2

3

)n
, or state that it diverges.

Example 5.2.10. Consider the following infinite series.

∞∑
n=1

(−1)n

3n+1

By rewriting the general term as (−1)n

3n+1 = (−1)n

3·3n = 1
3
· (−1)n

3n
= 1

3

(
−1

3

)n
, we obtain a geometric series

with c = 1
3
and r = −1

3
. By the Formula for Convergent Geometric Series, we conclude that

∞∑
n=1

(−1)n

3n+1
=

∞∑
n=1

1

3

(
−1

3

)n
=

1
3

(
−1

3

)
1 + 1

3

= − 1

12
.

Exercise 5.2.11. Compute the value of the infinite series
∞∑
n=2

35

32n
, or state that it diverges.
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Exercise 5.2.12. Compute the value of the infinite series
∞∑
n=1

(ln eπ)n, or state that it diverges.

Later in the course, we will consider infinite series as the discrete analog of improper integrals.

Like with convergent improper integrals, there are nice linearity properties for convergent series.

Proposition 5.2.13 (Linearity of Convergent Series). Given any convergent series
∑

an and
∑

bn
and any real number C, the following properties hold.

(i.) (Additive Property of Convergent Series)
∑

(an ± bn) =
∑

an ±
∑

bn

(ii.) (Distributive Property of Convergent Series)
∑

Can = C(
∑

an)

Particularly, any linear combination of convergent series is a convergent series.

We have thus far determined when telescoping and geometric series are convergent. Conversely,

we can determine when an infinite series is divergent by inspecting its general term an.

Theorem 5.2.14 (nth Term Divergence Test). Consider any infinite sum
∑∞

k=m ak of real numbers

ak beginning at any integer m. If lim
k→∞

ak ̸= 0, then
∑∞

k=m ak diverges. Put another way, in order

for an infinite series to converge, the sequence of its general terms must converge to 0.

Proof. Observe that the sequence of partial sums of
∑∞

k=m ak is given by

sn =
n∑

k=m

ak = am + am+1 + · · ·+ an−1 + an.

Consequently, the relationship between the consecutive terms in the sequence of partial sums is

sn = am + am+1 + · · ·+ an−1 + an = sn−1 + an

so that an = sn − sn−1. Observe that if
∑∞

k=m ak converges, then we must have that

lim
n→∞

an = lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = lim
n→∞

sn − lim
n→∞

sn = 0

by the first part of the Limit Laws for Sequences because sn must be a convergent sequence.

On first glance, it might appear that the above proof did not actually establish what we in-

tended: we proved that if
∑∞

k=m ak converges, then lim
n→∞

an = 0. We refer to this as a proof by

contrapositive.

Example 5.2.15. Consider the following infinite series.

∞∑
n=0

n√
n2 + 1

Before we do anything with this infinite series, we must check if it diverges by computing the limit

of its general term. By the nth Term Divergence Test, this infinite series diverges because

lim
n→∞

n√
n2 + 1

= lim
n→∞

n√
n2
(
1 + 1

n2

) = lim
n→∞

n

n
√

1 + 1
n2

= lim
n→∞

1√
1 + 1

n2

= 1.
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Example 5.2.16. Consider the following infinite series.
∞∑
n=0

(−1)n

Even though it might appear näıvely that the infinite series could be telescoping, we can rule out

this possibility by the nth Term Divergence Test: in fact, the series diverges because (−1)n diverges.

Exercise 5.2.17. Compute the value of the series
∞∑
n=1

n!

10n
, or state that it diverges.

Exercise 5.2.18. Compute the value of the series
∞∑
n=7

n3 + n2 + n+ 1

n3 − n2 + n− 1
, or state that it diverges.

Caution. Often, upon first learning the nth Term Divergence Test, students can easily become

mixed up in the logic of what exactly the theorem guarantees. Plainly, the theorem says that

(a.) if the sequence an does not converge to 0, then the infinite series
∑n

k=m ak diverges, and

(b.) if the infinite series
∑∞

k=m ak converges, then the sequence an converges to 0.

Consequently, using the nth Term Divergence Test, we are able to decipher when a series diverges;

however, the drawback is that we cannot tell that a series converges by this test.

Proposition 5.2.19 (Converse of the Divergence Test Is False). There exists an infinite sequence

of real numbers an such that lim
n→∞

an = 0 but the infinite series
∑∞

k=m ak diverges.

Proof. Observe that the following infinite series diverges. Explicitly, we have that
∞∑
n=1

1

n
=

1

1
+

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ · · ·

>
1

1
+

1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
+ · · ·

=
1

1
+

1

2
+ 2 · 1

4
+ 4 · 1

8
+ · · ·

=
1

1
+

1

2
+

1

2
+

1

2
+ · · · = 1

1
+

∞∑
n=1

1

2
.

Considering that the latter is a divergent geometric series, the series in question diverges; however,

it is clear that the sequence of general terms an = 1/n of the series converges to 0.

Considering that this is our prototypical counterexample to the converse of the nth Term Di-

vergence Test, we refer to the following divergent infinite series as the harmonic series.
∞∑
n=1

1

n

Crucially, the harmonic series will soon provide a useful point of comparison by which we can

measure the divergence of other infinite series. We illustrate with a couple examples.
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Example 5.2.20. Consider the following infinite series.

∞∑
n=1

n

n2 + n

Considering that n ≥ 1, we may cancel a factor of n from the numerator and denominator to obtain

∞∑
n=1

n

n2 + n
=

∞∑
n=1

1

n+ 1
.

Like with definite integrals, we may perform a substitution to change the index of summation.

Explicitly, if n = k− 1, then k = n+1 and k = 2 if n = 1. Changing the index of summation yields

∞∑
n=1

1

n+ 1
=

∞∑
k=2

1

k
= −1 +

∞∑
k=1

1

k
.

Consequently, this infinite series differs from the divergent harmonic series by 1, hence it diverges.

Exercise 5.2.21. Consider the following infinite series.

∞∑
n=1

1√
n

Observe that
√
x is an increasing function because its derivative 1

2
√
x
is positive for all real numbers

x > 0. Consequently, its reciprocal is a decreasing function, so we have that

sn =
n∑

k=1

1√
k
>

n∑
k=1

1√
n
=

n√
n
=

√
n

for all integers n ≥ 1. Considering that lim
n→∞

√
n = ∞, it follows that lim

n→∞
sn = ∞. By the nth Term

Divergence Test, we conclude that the infinite series in question diverges to infinity.

5.3 The Integral Test and the p-Series Test

Given any infinite sequence of real numbers an such that there exists a non-negative integer m for

which an ≥ 0 for all integers n ≥ m, one immediate interpretation of the value of the corresponding

infinite series is the total area of rectangles with width 1 and height ak for each integer k ≥ m.

∞∑
k=m

ak = am + am+1 + am+2 + · · · = total area of rectangles of with width 1 and height ak

Bearing this in mind, one can imagine that the sequence of the partial sums of the series is increasing.

sn+1 =
n+1∑
k=m

ak = am + am+1 + · · ·+ an + an+1 = an+1 +
n∑

k=m

ak = an+1 + sn ≥ sn

Consequently, if can deduce that the sequence of partial sums is bounded above, then we may apply

the Monotone Convergence Theorem to determine the convergence of the infinite series since

∞∑
k=m

ak = lim
n→∞

n∑
k=m

ak = lim
n→∞

sn.
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Proposition 5.3.1 (Convergence of Infinite Series with Non-Negative Terms). Consider any infinite

sequence of real numbers an such that an ≥ 0 for all integers n ≥ m for some integer m.

(a.) If the sequence sn =
n∑

k=m

ak is bounded above, then the infinite series
∞∑

k=m

ak converges.

(b.) If the sequence sn =
n∑

k=m

ak is not bounded above, then the infinite series
∞∑

k=m

ak diverges.

Often, it is difficult in practice to find a closed form for the partial sums of a series, hence it is

difficult to determine the an upper bound for Proposition 5.3.1. Luckily, we can say more.

Theorem 5.3.2 (Integral Test). Consider any infinite sequence of real numbers an such that for

some integer m, we have that an = f(n) for some function f(x) with the following properties.

(i.) f(x) is non-negative for all real numbers x ≥ m.

(ii.) f(x) is continuous for all real numbers x ≥ m.

(iii.) f(x) is decreasing for all real numbers x ≥ m.

Given that each of the above conditions holds, the convergence of
∞∑

k=m

am is determined as follows.

(a.) If the improper integral

∫ ∞

m

f(x) dx converges, then
∞∑

k=m

ak converges, and

(b.) If the improper integral

∫ ∞

m

f(x) dx diverges, then
∞∑

k=m

ak diverges.

Proof. By the exposition beginning this section, the series represents the total area of rectangles

with width 1 and height an = f(n) for all integers n ≥ m. Considering that f(x) is decreasing, it

follows that the right-endpoint Riemann approximation of the area bounded by the curve f(x) from

x = m to x = n is an underestimate for all real numbers n ≥ m. Put another way, we have that

n∑
k=m

ak = am + am+1 + · · ·+ an ≤
∫ n

m

f(x) dx

for all integers n ≥ m. By taking the limit as n tends to infinity, we conclude that

∞∑
k=m

ak = lim
n→∞

n∑
k=m

ak ≤ lim
n→∞

∫ n

m

f(x) dx =

∫ ∞

m

f(x) dx.

Consequently, if the improper integral on the right-hand side converges, then the infinite series

converges, as well. Conversely, the left-endpoint Riemann approximation of the area bounded by

the curve f(x) from x = m to x = n is an overestimate for all real numbers n ≥ m so that

∞∑
k=m

ak = lim
n→∞

n∑
k=m

ak ≥ lim
n→∞

∫ n

m

f(x) dx =

∫ ∞

m

f(x) dx.
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Exercise 5.3.3. Use the Integral Test to prove that
∞∑

n=m

1

n
diverges for any positive integer m.

Solution. Before we are able to use the Integral Test, we must verify the following properties.

(i.) Observe that f(x) =
1

x
is positive for all real numbers x ≥ m ≥ 1.

(ii.) Observe that f(x) =
1

x
is continuous for all real numbers x ≥ m ≥ 1.

(iii.) By the Criterion for Monotonicity, f(x) =
1

x
is decreasing for all real numbers x ≥ m because

f ′(x) = − 1

x2
< 0

for all real numbers x ≥ 1 since x2 is positive for all real numbers x ≥ m ≥ 1.

Consequently, the Integral Test asserts that the harmonic series diverges because∫ ∞

m

1

x
dx = lim

b→∞

∫ b

m

1

x
dx = lim

b→∞
[ln(x)]bm = lim

b→∞
[ln(b)− ln(m)] = ∞. ⋄

Exercise 5.3.4. Use the Integral Test to determine the convergence of the series
∞∑
n=0

1

n2 + 1
.

Solution. Before we are able to use the Integral Test, we must verify the following properties.

(i.) Observe that f(x) =
1

x2 + 1
is positive for all real numbers x ≥ 0.

(ii.) Observe that f(x) =
1

x2 + 1
is continuous for all real numbers x ≥ 0.

(iii.) By the Criterion for Monotonicity, f(x) =
1

x2
is decreasing for all real numbers x ≥ 1 because

f ′(x) = − 2x

(x2 + 1)2
< 0

for all real numbers x ≥ 1 since (x2 + 1)2 > 0 and −2x < 0 for all real numbers x ≥ 1.

Consequently, the Integral Test asserts that the infinite series in question converges because∫ ∞

1

1

x2 + 1
dx = lim

b→∞

∫ b

1

1

x2 + 1
dx = lim

b→∞
[arctan(x)]b1 = lim

b→∞

[
arctan(b)− π

4

]
=

π

4
. ⋄

Exercise 5.3.5. Use the Integral Test to determine the convergence of the series
∞∑
n=2

1

n ln(n)
.

Solution. Before we are able to use the Integral Test, we must verify the following properties.

(i.) Observe that f(x) =
1

x ln(x)
is positive for all real numbers x ≥ 2.
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(ii.) Observe that f(x) =
1

x ln(x)
is continuous for all real numbers x ≥ 2.

(iii.) By the Criterion for Monotonicity, f(x) =
1

x ln(x)
is decreasing for all real numbers x ≥ 2:

f ′(x) =
1− ln(x)

[x ln(x)]2
< 0

for all real numbers x ≥ 2 since [x ln(x)]2 > 0 and 1− ln(x) < 0 for all real numbers x ≥ 2.

Consequently, the Integral Test asserts that the infinite series in question diverges because∫ ∞

2

1

x ln(x)
dx = lim

b→∞

∫ b

2

1

x ln(x)
dx = lim

b→∞

∫ ∞

ln(2)

1

u
du = lim

b→∞
[ln(u)]bln(2) = ∞.

Explicitly, we have used the substitution u = ln(x) with du = 1
x
dx to compute the integral. ⋄

Exercise 5.3.6. Use the Integral Test to determine the convergence of the series
∞∑
n=2

ln(n)

n
.

Exercise 5.3.7. Use the Integral Test to determine the convergence of the series
∞∑
n=2

1

n
√
n2 − 1

.

Solution. Before we are able to use the Integral Test, we must verify the following properties.

(i.) Observe that f(x) =
1

x
√
x2 − 1

is positive for all real numbers x ≥ 2.

(ii.) Observe that f(x) =
1

x
√
x2 − 1

is continuous for all real numbers x ≥ 2.

(iii.) By the Criterion for Monotonicity, f(x) =
1

x
√
x2 + 1

is decreasing for all real numbers x ≥ 2:

f ′(x) = −

√
x2 − 1 + x2

√
x2−1

x2(x2 − 1)
< 0

for all real numbers x ≥ 2 since x2(x2 − 1) > 0 and
√
x2 − 1 +

x2

√
x2 − 1

> 0 for all x ≥ 2.

Consequently, the Integral Test asserts that the infinite sequence in question converges because∫ ∞

2

1

x
√
x2 − 1

dx = lim
b→∞

∫ b

2

1

x
√
x2 − 1

dx = lim
b→∞

[arcsec(x)]b2 = lim
b→∞

[
arcsec(b)− π

3

]
=

π

6
. ⋄

Exercise 5.3.8. Use the Integral Test to determine the convergence of the series
∞∑
n=1

n

n2 + 1
.
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Geometric and telescoping series are not the only common infinite series. Given any nonzero

real number p and any integer m ≥ 1, any infinite series of the following form is called a p-series.

∞∑
n=m

1

np

One of the foremost consequences of the Integral Test is the following test.

Theorem 5.3.9 (p-Series Test). Consider any nonzero real number p.

(a.) If p > 1, then the p-series
∞∑

n=m

1

np
converges.

(b.) If p ≤ 1, then the p-series
∞∑

n=m

1

np
diverges.

Proof. Certainly, if p = 0, the series diverges by the nth Term Divergence Test. Likewise, if p < 0,

then −p > 0 implies that 1
np = n−p has positive exponent. Once again, the nth Term Divergence

Test can be applied to demonstrate that the infinite series diverges. Consequently, we may assume

that p > 0. Observe that f(x) = x−p is positive, decreasing, and continuous for all real numbers

x ≥ m. Explicitly, we have that f(x) = x−p so that f ′(x) = −px−p−1 < 0 for all real numbers x ≥ m.

By the Integral Test, it suffices to determine when the following improper integral converges.

∫ ∞

m

1

xp
dx = lim

b→∞

∫ b

m

x−p dx =


lim
b→∞

[
x1−p

1− p

]b
m

if p ̸= 1

lim
b→∞

[ln(x)]bm if p = 1

Consequently, if p > 1, then 1 − p < 0 so that the limit converges. On the other hand, if p < 1,

then 1− p > 0 so the limit diverges to infinity. Certainly, the limit of ln(x) diverges to infinity.

Exercise 5.3.10. Use the p-Series Test to determine the convergence of
∞∑
n=1

1
5
√
n7

.

Solution. Observe that
5
√
n7 = n7/5, hence this is a convergent p-series with p = 7

5
. ⋄

Exercise 5.3.11. Use the p-Series Test to determine the convergence of
∞∑
n=1

1

n2.7
.

Exercise 5.3.12. Use the p-Series Test to determine the convergence of
∞∑
n=1

1
7
√
n5

.

Solution. Observe that
7
√
n5 = n5/7, hence this is a divergent p-series with p = 5

7
. ⋄

Exercise 5.3.13. Use the p-Series Test to determine the convergence of
∞∑
n=1

1

n0.31415
.
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Of course, the p-Series Test only applies to infinite series of reciprocals of power functions, so it

is not immediately applicable to determine the convergence of series the likes of

∞∑
n=1

n2

n5 + 1
.

Even more, we would not endeavor to use the Integral Test on this series, either, because the

antiderivative of f(x) =
x2

x5 + 1
is absolutely horrendous. But rest assured, we are not out of luck!

5.4 Comparison Tests for Series

By the p-Series Test of the previous section, the convergence of infinite p-series is completely clas-

sified. Consequently, for any infinite series whose general term “looks like” a p-series, one might

naturally suspect that it is intuitively possible to deduce the convergence of the series based on the

convergence of attendant p-series. Explicitly, consider the infinite series

∞∑
n=1

n2

n5 + 1

from the previous section. Certainly, for all sufficiently large integers n, the sequence n5+1 behaves

similarly to the sequence n5. Consequently, for all sufficiently large integers n, we have that

n2

n5 + 1
∼ n2

n5
∼ 1

n3
.

We introduce the symbol ∼ to express that two infinite sequences of real numbers an and bn are

asymptotically equivalent, i.e., we have that an ∼ bn if and only if

lim
n→∞

an
bn

= 1.

Ultimately, the upshot is that if the infinite sequences of real numbers an and bn are asymptotically

equivalent, then the infinite series
∑

an converges if and only if the infinite series
∑

bn converges.

Even if the sequences an and bn are not asymptotically equivalent, it is possible to use a similar

intuition to deduce the convergence of the infinite series
∑

an from the convergence of infinite series∑
bn (and vice-versa). We illustrate and prove this fact in the following series test.

Theorem 5.4.1 (Direct Comparison Test). Consider any pair of infinite sequences of real numbers

an and bn such that there exists an integer m for which 0 ≤ an ≤ bn for all integers n ≥ m.

(a.) If
∞∑

n=m

bn converges, then
∞∑

n=m

an converges.

(b.) If
∞∑

n=m

an diverges, then
∞∑

n=m

bn diverges.

https://www.wolframalpha.com/input?i=%5Cint+%5Cfrac%7Bx%5E2%7D%7Bx%5E5+%2B+1%7D+%5C%2C+dx
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Proof. By hypothesis that 0 ≤ an ≤ bn for all integers n ≥ m, we have that

n∑
k=m

ak = am + am+1 + · · ·+ an ≤ bm + bm+1 + · · ·+ bn =
n∑

k=m

bk

for all integers n ≥ m. Consequently, if the infinite series of bn converges, then its sequence sn of

partial sums must be bounded above by the Monotone Convergence Theorem: indeed, the sequence

sn =
n∑

k=m

bk

is increasing because bn ≥ 0 for all integers n ≥ m, and it converges. We conclude that the sequence

tn =
n∑

k=m

ak

of partial sums of the infinite series of an is bounded above and increasing because an ≥ 0 for

all integers n ≥ m. Consequently, the Monotone Convergence Theorem guarantees that the infinite

series of an converges. Conversely, the statement (b.) is the contrapositive of the statement (a.).

Exercise 5.4.2. Use the Direct Comparison Test to determine the convergence of
∞∑
n=1

n2

n5 + 1
.

Solution. Like we mentioned at the beginning of this section, if we squint our eyes a bit, the general

term of this infinite series is essentially a convergent p-series with p = 3. Consequently, we imagine

it might be possible to directly compare with such a convergent infinite series. Observe that

n5 + 1 ≥ n5 for all integers n ≥ 1 yields that

1

n5 + 1
≤ 1

n5
so that

n2

n5 + 1
≤ n2

n5
and

n2

n5 + 1
≤ 1

n3
for all integers n ≥ 1 and

∞∑
n=1

n2

n5 + 1
≤

∞∑
n=1

1

n3
.

Considering that
∑
n=1

1

n3
converges by the p-Series Test, we conclude that

∞∑
n=1

n2

n5 + 1
converges by

the Direct Comparison Test since it is bounded above by a convergent series. ⋄
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Exercise 5.4.3. Use the Direct Comparison Test to determine the convergence of
∞∑
n=1

n2

n3 + n2 + 3
.

Exercise 5.4.4. Use the Direct Comparison Test to determine the convergence of
∞∑
n=2

1
7
√
n5 − 1

.

Solution. Once again, if we squint our eyes at the denominator, it resembles the divergent p-series

with p = 5
7
. Consequently, we intuit that this infinite series diverges. By the Direct Comparison

Test, we must find a positive integer m sufficiently large such that for all integers n ≥ m, we have

1

n5/7
≤ 1

7
√
n5 − 1

.

By working backwards from this inequality, we can determine the positive integer m as follows.

1

n5/7
≤ 1

7
√
n5 − 1

yields that

1

n5
≤ 1

n5 − 1
by raising both sides to the seventh power and

n5 ≥ n5 − 1 for all integers n ≥ 2.

Consequently, the above analysis reveals that the desired inequality of infinite series holds.

∞∑
n=2

1

n5/7
≤

∞∑
n=2

1
7
√
n5 − 1

By the Direct Comparison Test and the p-Series Test, we conclude that the series diverges. ⋄

Exercise 5.4.5. Use the Direct Comparison Test to determine the convergence of
∞∑
n=0

1
5
√
n7 − 1

.

Examples 5.4.2 and 5.4.4 reveal that the Direct Comparison Test can sometimes be employed

to test for convergence of infinite series of any sequence that is the reciprocal of a power function

composed with a polynomial; however, this application is not always the most straightforward.

Example 5.4.6. Consider the following infinite series.

∞∑
n=0

1
7
√
n5 + 1

.

Bearing in mind Example 5.4.4, our knee-jerk reaction is to directly compare this infinite series with

the divergent p-series with p = 5
7
; however, this is not feasible because if we attempt to bound the

series in question below by the aforementioned divergent p-series, we find that the inequalities here

do not actually work out. Explicitly, we would begin by observing that



110 CHAPTER 5. SEQUENCES AND SERIES

n5 + 1 ≥ n5 for all integers n ≥ 0 implies that

1

n5 + 1
≤ 1

n5
for all integers n ≥ 1 so that

1
7
√
n5 + 1

≤ 1

n5/7
for all integers n ≥ 1 and

∞∑
n=1

1
7
√
n5 + 1

≤
∞∑
n=1

1

n5/7
.

But the divergence of the infinite series on the right-hand side of the infinite series has no bearing

on the divergence of the infinite series on the left-hand side: indeed, we have that

∞∑
n=1

1

n2
≤

∞∑
n=1

1

n
≤

∞∑
n=1

1√
n

because n2 ≥ n ≥
√
n for all integers n ≥ 1; however, the p-series with p = 2 converges and the

harmonic series diverges. Consequently, the Direct Comparison Test fails in the case that a series is

bounded above by a divergent series (or bounded below by a convergent series). Even still, because

1
7
√
n5 + 1

∼ 1

n5
since we have that lim

n→∞

7
√
n5 + 1

n5
= 1,

we suspect that the infinite series in question diverges. Considering the end behavior of polynomials

of odd degree, the clever reader might be able to piece together that n7−n5− 1 ≥ 0 for all integers

n ≥ m for some sufficiently large integer m ≥ 2, from which it follows that

n7 ≥ n5 + 1 so that
1

n7
≤ 1

n5 + 1
yields that

1

n
≤ 1

7
√
n5 + 1

for all integers n ≥ m.

By the Direct Comparison Test, we conclude that the series in question diverges since

∞∑
n=m

1

n
≤

∞∑
n=m

1
7
√
n5 + 1

.

Example 5.4.6 illustrates that even if there is an asymptotic equivalence between two sequences

an and bn, the Direct Comparison Test may fail if the inequality 0 ≤ an ≤ bn does not hold. Even

worse, it could be quite ad hoc and unintuitive to find another sequence for which the required

inequality holds. But fortunately for us, the Direct Comparison Test does not use the full strength

of the asymptotic equivalence of sequences. Our next series test makes good on this.

Theorem 5.4.7 (Limit Comparison Test). Consider any pair of infinite sequences of real numbers

an and bn such that there exists an integer m for which an ≥ 0 and bn ≥ 0 for all integers n ≥ m.

Consider the following (possibly infinite) limit of the ratios of the sequences.

L = lim
n→∞

an
bn
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(a.) If L = 0 and
∞∑

n=m

bn converges, then
∞∑

n=m

an converges.

(b.) If L > 0 and L is finite, then
∞∑

n=m

an converges if and only if
∞∑

n=m

bn converges.

(c.) If L = ∞ and
∞∑

n=m

bn diverges, then
∞∑

n=m

an diverges.

Proof. We will assume first that L ≥ 0 is finite. By definition of the limit, for all sufficiently large

integers n, the ratio of an and bn can be made as closed as desired to the value of L. Consequently,

there exists a real number α > L such that for all sufficiently large integers n, we have that

0 ≤ an
bn

≤ α so that 0 ≤ an ≤ αbn.

By the Direct Comparison Test, if the infinite series of bn converges, then the infinite series of an
converges; this proves statement (a.) and the “if” part of statement (b.). We will assume now that

L is either positive (L > 0) or infinite (L = ∞). Either way, L is nonzero, hence the real number

K = lim
n→∞

bn
an

= lim
n→∞

1
an
bn

=
1

lim
n→∞

an
bn

=
1

L

is well-defined and satisfies that K ≥ 0. By the previous paragraph, by simply reversing the roles of

the infinite sequences an and bn, we find that statement (c.) and the “only if” part of (b.) hold.

Unfortunately, though this proof is quite clever, it obscures the intuition by which we were

initially lead to the Limit Comparison Test. We rephrase the three statements as follows.

(a.) If L = 0, then the terms of the infinite sequence bn are eventually “significantly larger” than

the terms of the infinite sequence an, hence by the Direct Comparison Test,

if
∞∑

n=m

bn converges, then
∞∑

n=m

an converges.

(b.) If L is finite and L > 0, then the infinite sequences an and Lbn are asymptotically equivalent:

lim
n→∞

an
Lbn

=
1

L

(
lim
n→∞

an
bn

)
=

1

L
· L = 1.

Consequently, for all sufficiently large integers n, the infinite sequences of real numbers an
and Lbn can be made as close to each other in value as possible; thus, the infinite series

∞∑
n=m

an and
∞∑

n=m

Lbn = L

∞∑
n=m

bn

can be made as close to each other in value as possible. We conclude that

∞∑
n=m

an converges if and only if
∞∑

n=m

bn converges.
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(c.) If L = ∞, then the terms of the infinite sequence an are eventually “significantly larger” than

the terms of the infinite sequence bn, hence by the Direct Comparison Test,

if
∞∑

n=m

an converges, then
∞∑

n=m

bn converges.

Exercise 5.4.8. Use the Limit Comparison Test to determine the convergence of
∞∑
n=0

1
7
√
n5 + 1

.

Solution. By Example 5.4.4, we suspect it would be useful to compare with n5/7. Observe that

lim
n→∞

n5/7

7
√
n5 + 1

= lim
n→∞

n5/7

7

√
n5
(
1 + 1

n5

) = lim
n→∞

n5/7

n5/7 7

√
1 + 1

n5

= lim
n→∞

1

7

√
1 + 1

n5

= 1.

By the Limit Comparison Test, the series in question diverges because the p-series n−5/7 diverges. ⋄

Exercise 5.4.9. Use the Limit Comparison Test to determine the convergence of
∞∑
n=1

1
2
√
n5 + n

.

Exercise 5.4.10. Use the Limit Comparison Test to determine the convergence of
∞∑
n=0

n3 + n− 1

n4 − n3 + 1
.

Solution. By squinting our eyes, we suspect it would be useful to compare with n−1. Observe that

lim
n→∞

n3+n−1
n4−n3+1

n−1
= lim

n→∞

n3 + n− 1

n−1(n4 − n3 + 1)
= lim

n→∞

n3 + n− 1

n3 − n2 + 1
n

= 1.

By the Limit Comparison Test, the series in question diverges because the p-series n−1 diverges. ⋄

Exercise 5.4.11. Use the Limit Comparison Test to determine the convergence of
∞∑
n=0

n2 + 1

n4 + 16
.

5.5 Alternating Series and Absolute Convergence

Our study of infinite series so far has culminated in the development of several tools with which to

test convergence of many different types of series. Before we proceed, we summarize these results.

Summary 5.5.1 (Convergence Tests for Geometric Series and Series with Non-Negative Terms).

(a.) Geometric series are of the form
∞∑
n=k

crn for some real numbers c and r. We have that

∞∑
n=k

crn =


crk+1

1− r
if − 1 < r < 1 and

diverges if r ≥ 1 or r ≤ −1.

We refer to this loosely as the Geometric Series Test.
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(b.) Given any infinite sequence of real numbers an such that there exists a positive integer m and

a real function f(x) with the properties that an = f(n) for all integers n ≥ m and

• f(x) is non-negative (i.e., f(x) ≥ 0) for all real numbers x ≥ m,

• f(x) is continuous for all real numbers x ≥ m, and

• f(x) is decreasing (i.e., f ′(x) < 0) for all real numbers x ≥ m,

the Integral Test asserts that
∞∑

n=m

an converges if and only if

∫ ∞

m

f(x) dx converges.

(c.) A p-series is of the form
∞∑
n=k

1

np
for some positive integer k and real number p. We have that

∞∑
n=k

1

np

{
converges if p > 1 and

diverges if p ≤ 1

by the p-Series Test. Generally, it is difficult to compute the value of a convergent p-series.

(d.) Given any infinite sequence of real numbers an such that there exists a positive integer m

with an ≥ 0 for all integers n ≥ m, the Direct Comparison Test can be used to determine

the convergence of an infinite series of an by directly comparing it to an infinite series of a

sequence bn such that either 0 ≤ bn ≤ an or 0 ≤ an ≤ bn for all integers n ≥ m. Explicitly,

• if 0 ≤ an ≤ bn for all integers n ≥ m and
∞∑

n=m

bn converges, then
∞∑

n=m

an converges and

• if 0 ≤ bn ≤ an for all integers n ≥ m and
∞∑

n=m

bn diverges, then
∞∑

n=m

an diverges.

(e.) Given any infinite sequence of real numbers an such that there exists a positive integer m

with an ≥ 0 for all integers n ≥ m, the Limit Comparison Test can be used to determine the

convergence of an infinite series of an by considering the (possibly infinite) limit

L = lim
n→∞

an
bn

for some infinite sequence of real numbers bn such that bn ≥ 0 for all integers n ≥ m. Explicitly,

• if L = 0 and
∞∑

n=m

bn converges, then
∞∑

n=m

an converges;

• if L > 0 and L is finite, then
∞∑

n=m

an converges if and only if
∞∑

n=m

bn converges; and

• if L = ∞ and
∞∑

n=m

bn diverges, then
∞∑

n=m

an diverges.
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Be sure to note that (other than for geometric series) the convergence tests that we have discussed

so far pertain only to infinite series whose sequence of general terms possesses only finitely many

negative terms. Curiously enough, the behavior of a general infinite series of a sequence an with

infinitely many negative terms can stand in stark contrast to the infinite series of the sequence |an|
of the absolute value of the general term. We will soon see that the alternating harmonic series

∞∑
n=1

(−1)n

n

converges in spite of the fact that the harmonic series (i.e., the p-series with p = 1) diverges!

Quite naturally, it is possible to obtain from any infinite series an infinite series with no negative

terms: if an is the general term of the series, then we may simply consider infinite series of |an|.
By doing this, for one, we allow ourselves the convenience of the Convergence Tests for Geometric

Series and Series with Non-Negative Terms. Even more, we will say that the infinite series

∞∑
n=m

an

converges absolutely (or is absolutely convergent) if and only if the following series converges.

∞∑
n=m

|an|

Exercise 5.5.2. Prove that the infinite series
∞∑
n=1

(−1)nn−π converges absolutely.

Solution. Observe that in absolute value, we have that

∞∑
n=1

|(−1)nn−π| =
∞∑
n=1

1

nπ

is a p-series with p = π > 1. Consequently, the series converges absolutely. ⋄

Exercise 5.5.3. Prove that the infinite series
∞∑
n=0

(−1)n(n2 + 1)−1 converges absolutely.

Exercise 5.5.4. Prove that the infinite series
∞∑
n=1

(−1)nne−n2

converges absolutely.

Solution. Observe that in absolute value, we have that

∞∑
n=1

∣∣∣(−1)nne−n2
∣∣∣ = ∞∑

n=1

ne−n2

.

Consider the continuous real function f(x) = xe−x2
. By the Product Rule, we have that

f ′(x) = e−x2

+ xe−x2

(−2x) = e−x2

(1− 2x2) < 0
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because 1−2x2 < 0 and e−x2
> 0 for all real numbers x ≥ 1. Consequently, f(x) is (i.) non-negative,

(ii.) continuous, and (iii.) decreasing. By the Integral Test, it suffices to note that∫ ∞

1

xe−x2

dx = lim
b→∞

∫ b

1

xe−x2

dx = lim
b→∞

[
−1

2
e−x2

]b
1

= lim
b→∞

(
1

2
e−1 − 1

2
e−b2

)
=

1

2e

converges, hence the series converges in absolute value, so it is absolutely convergent. ⋄

Crucially, convergence in absolute value implies convergence of the original series.

Theorem 5.5.5 (Absolute Convergence Implies Convergence). Given any infinite sequence of real

numbers an, if the infinite series
∞∑

n=m

|an| converges, then
∞∑

n=m

an converges.

Proof. By definition of the absolute value function, we have that −|an| ≤ an ≤ |an| for all integers
n, hence we have that 0 ≤ an + |an| ≤ 2|an|. By the Direct Comparison Test with

∞∑
n=m

(an + |an|) ≤
∞∑

n=m

2|an| = 2
∞∑

n=m

|an|,

if the series on the right-hand side converges, then the series on the left-hand side converges. Even

more, by the first property of Linearity of Convergent Series, we have that

∞∑
n=m

an =
∞∑

n=m

(an + |an| − |an|) =
∞∑

n=m

(an + |an|)−
∞∑

n=m

|an|

converges because both of the infinite series in the difference converge.

Exercise 5.5.6. Prove that the infinite series
∞∑
n=1

(−1)nn−π converges.

Proof. By Example 5.5.2, the series converges absolutely, so it converges.

Exercise 5.5.7. Prove that the infinite series
∞∑
n=0

(−1)n(n2 + 1)−1 converges.

Exercise 5.5.8. Prove that the infinite series
∞∑
n=1

(−1)nne−n2

converges.

Proof. By Example 5.5.4, the series converges absolutely, so it converges.

Certainly, there exist infinite series that do not converge absolutely. Explicitly, for any divergent

infinite series of an, the infinite series of (−1)nan cannot converge absolutely. Conversely, suppose

that an is an infinite sequence of positive real numbers. We refer to the infinite series

∞∑
n=m

(−1)nan

as an alternating series because its terms alternate in sign. Even more, we say that the infinite

series of (−1)nan converges conditionally (or is conditionally convergent) if the alternating

series of (−1)nan converges but the series of an diverges. Below, we provide a powerful theorem for

testing convergence of alternating series. We invite the interested reader to note that the proof of

the statements requires more care due to the alternating nature of its sequence of terms.
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Theorem 5.5.9 (Alternating Series Test). Consider any sequence of real numbers an such that

(i.) an is non-negative for all integers n ≥ m;

(ii.) an is decreasing for all integers n ≥ m; and

(iii.) an converges to zero, i.e., lim
n→∞

an = 0.

Given that each of the above conditions holds, the infinite series
∞∑

n=m

(−1)nan converges.

Proof. Convergence of an infinite series depends explicitly upon the convergence of its sequence of

partial sums, so we must prove that the following sequence of partial sums converges.

sn =
n∑

k=m

(−1)kak

Considering the alternating nature of the sequence (−1)kak, we consider the cases that n is even

and n is odd separately. We remind the reader that if n is even, then n = 2ℓ for some integer ℓ.

Likewise, if n is odd, then n = 2ℓ+1 for some integer ℓ. Going forward, we will simply replace work

with 2ℓ if n is even or 2ℓ + 1 if n is odd. Crucially, we have that (−1)2ℓ = 1 and (−1)2ℓ+1 = −1.

Even more, the ℓth term of the sequence s2ℓ of even partial sums is followed by the (ℓ+ 1)th term

s2ℓ+2 because 2(ℓ+ 1) = 2ℓ+ 2. Likewise, the ℓth term of the sequence s2ℓ+1 of odd partial sums is

followed by the (ℓ+1)th term s2ℓ+3 because 2(ℓ+1)+1 = 2ℓ+3. Bearing this in mind, we proceed.

(a.) Observe that for any integer ℓ such that 2ℓ ≥ m, we have that

s2ℓ+2 =
2ℓ+2∑
k=m

(−1)kak

= (−1)mam + (−1)m+1am+1 + · · ·+ (−1)2ℓa2ℓ − a2ℓ+1 + a2ℓ+2

= a2ℓ+2 − a2ℓ+1 +
2ℓ∑

k=m

(−1)kak

= a2ℓ+2 − a2ℓ+1 + s2ℓ.

By assumption that an is decreasing, we have that a2ℓ+2 ≤ a2ℓ+1 so that a2ℓ+2−a2ℓ+1 ≤ 0 and

s2ℓ+2 = a2ℓ+2 − a2ℓ+1 + s2ℓ ≤ s2ℓ.

Consequently, the even partial sums of the infinite series form a decreasing sequence.
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(b.) Conversely, for any integer ℓ such that 2ℓ+ 1 ≥ m, we have that

s2ℓ+3 =
2ℓ+3∑
k=m

(−1)kak

= (−1)mam + (−1)m+1am+1 + · · ·+ (−1)2ℓ+1a2ℓ+1 + a2ℓ+2 − a2ℓ+3

= a2ℓ+2 − a2ℓ+3 +
2ℓ+1∑
k=m

(−1)kak

= a2ℓ+2 − a2ℓ+3 + s2ℓ+1.

By assumption that an is decreasing, we have that a2ℓ+2 ≥ a2ℓ+3 so that a2ℓ+2−a2ℓ+3 ≥ 0 and

s2ℓ+3 = a2ℓ+2 − a2ℓ+3 + s2ℓ+1 ≥ s2ℓ+1.

Consequently, the odd partial sums of the infinite series form an increasing sequence.

By the Monotone Convergence Theorem, if s2ℓ is bounded below and s2ℓ+1 is bounded above, then

these sequences converge. Considering that an is non-negative for all integers n ≥ m, we have that

s2ℓ − s2ℓ+1 = −(−1)2ℓ+1a2ℓ+1 = a2ℓ+1 ≥ 0. Consequently, if m is even, then we have that

0 ≤ am − am+1 = sm+1 ≤ s2ℓ+1 ≤ s2ℓ ≤ sm = am

for any integer ℓ such that 2ℓ ≥ m. On the other hand, if m is odd, then we have that

0 ≤ sm ≤ s2ℓ+1 ≤ s2ℓ ≤ sm+1 = am+1 − am

for any integer ℓ such that 2ℓ + 1 ≥ m. Either way, this analysis illustrates that s2ℓ is bounded

below and s2ℓ+1 is bounded above, hence each of these sequences converges. Consequently, by the

Limit Laws for Sequences and our assumption that lim
n→∞

an = 0, we conclude that

0 = lim
ℓ→∞

a2ℓ+1 = lim
n→∞

(s2ℓ − s2ℓ+1) = lim
ℓ→∞

s2ℓ − lim
ℓ→∞

s2ℓ+1,

hence s2ℓ and s2ℓ+1 converge to the same value L. Considering that s2ℓ+1 ≤ sn ≤ s2ℓ for any integer

ℓ such that n = 2ℓ or n = 2ℓ+ 1, the Squeeze Theorem for Sequences yields that sn converges.

Corollary 5.5.10 (Estimation Formula for Alternating Series). Given any sequence of real numbers

an that satisfies the hypotheses of the Alternating Series Test, the following inequality holds.∣∣∣∣∣
∞∑

k=m

(−1)kak −
n∑

k=m

(−1)kak

∣∣∣∣∣ ≤ an+1

Even more, we can approximate the value of
∞∑

n=m

(−1)nan to any desired degree of accuracy.
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Proof. Let L denote the value of the infinite series. Like before, we consider the following cases.

(a.) By the proof of the Alternating Series Test, if n = 2ℓ for some integer ℓ, then∣∣∣∣∣
∞∑

k=m

(−1)kak −
2ℓ∑

k=m

(−1)kak

∣∣∣∣∣ = |L− s2ℓ| = s2ℓ − L ≤ s2ℓ − s2ℓ+1 = a2ℓ+1.

Explicitly, we have that s2ℓ+1 ≤ L for all integers ℓ such that 2ℓ+ 1 ≥ m.

(b.) Likewise, by the proof of the Alternating Series Test, if n = 2ℓ+ 1 for some integer ℓ, then∣∣∣∣∣
∞∑

k=m

(−1)kak −
2ℓ+1∑
k=m

(−1)kak

∣∣∣∣∣ = |L− s2ℓ+1| = L− s2ℓ+1 ≤ s2ℓ+2 − s2ℓ+1 = a2ℓ+2.

Explicitly, we have that s2ℓ+2 ≥ L for all integers ℓ such that 2ℓ+ 2 ≥ m.

Considering that lim
n→∞

an = 0, the approximation grows more accurate as n grows larger.

Example 5.5.11. Consider the alternating harmonic series

∞∑
n=1

(−1)n

n
.

By the Alternating Series Test, it suffices to note that the sequence an =
1

n
satisfies that

(i.) an is non-negative for all integers n ≥ 1;

(ii.) an is decreasing because an+1 =
1

n+ 1
≤ 1

n
= an for all integers n ≥ 1; and

(iii.) an converges to zero, i.e., lim
n→∞

an = 0.

Consequently, the alternating harmonic series converges, as we suggested earlier in the section.

Even more, by the Estimation Formula for Alternating Series, if we wish to approximate its value

in a manner that is accurate to three decimal places, we seek to find an integer n ≥ 1 such that∣∣∣∣∣
n∑

k=1

(−1)k

k
−

∞∑
k=1

(−1)k

k

∣∣∣∣∣ ≤ 1

n+ 1
≤ 0.0001.

Considering that 0.0001 = 10−4, it suffices to take n ≥ 104. Using a computer algebra system, we

find that the first three decimal places of the value of the alternating harmonic series are −0.693.

Exercise 5.5.12. Prove that the alternating series
∞∑
n=1

(−1)n√
n

converges; then, use the Estimation

Formula for Alternating Series to approximate its value accurate to one decimal place.
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Example 5.5.13. Consider the alternating p-series

∞∑
n=1

(−1)n

np
.

We compute in this example all real numbers p such that the alternating p-series converges. Observe

that for any real number p > 0, the differentiable power function f(x) = x−p is non-negative for

all real numbers x ≥ 1. Even more, we have that −p < 0 so that f ′(x) = −pxp−1 < 0 for all real

numbers x ≥ 1, hence f(x) is decreasing for all real numbers x ≥ 1. Last, we have that

lim
n→∞

1

np
= lim

x→∞

1

xp
= 0.

By the Alternating Series Test, it follows that the alternating p-series converges for all real numbers

p > 0. Conversely, if p < 0, then −p > 0 so that f(x) = x−p is increasing. Explicitly, we have that

lim
n→∞

n−p ̸= 0, hence by the nth Term Divergence Test, the alternating p-series diverges.

Proposition 5.5.14 (Convergence of Alternating p-Series). Given any real number p, we have that

∞∑
n=1

(−1)n

np
=

{
converges if p > 0 and

diverges if p ≤ 0.

Exercise 5.5.15. Prove that the alternating series
∞∑
n=2

(−1)n ln(n)

n
converges.

Proof. By the Alternating Series Test, it suffices to prove that the non-negative function

f(x) =
ln(x)

x

is decreasing and converges to zero in the limit. By the Quotient Rule, we have that

f ′(x) =
1− ln(x)

x2
< 0

because ln(x) > 1 and x2 > 0 for all real numbers x ≥ 2. By L’Hôpital’s Rule, we have that

lim
x→∞

ln(x)

x
L’H
= lim

x→∞

1

x
= 0.

Exercise 5.5.16. Prove that the alternating series
∞∑
n=1

(−1)n sin(n)

n
converges.

5.6 The Ratio Test

We have presented thus far many tests for determining the convergence of infinite series; however,

we have made a distinction between series with positive and negative terms. Particularly, we cannot

apply the Integral Test or either of the Comparison Tests to a series whose terms alternate in sign.

On the other hand, we cannot apply the Alternating Series Test to a series with non-negative terms.

Our last series test can be applied to any series regardless of the sign of the general term.
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Theorem 5.6.1 (Ratio Test). Given any infinite sequence of real numbers an, consider the limit

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣.
(a.) If L < 1, then the infinite series

∞∑
n=m

an converges absolutely.

(b.) If L > 1, then the infinite series
∞∑

n=m

an diverges.

(c.) If L = 1, then the Ratio Test is inconclusive: the infinite series
∞∑

n=m

an may diverge.

Proof. We can easily dispense of the case (c.) that L = 1 by considering the infinite series

∞∑
n=1

1

n
and

∞∑
n=1

1

n2
.

Both of these infinite series satisfy that L = 1; however, the former is the famously divergent

harmonic series, and the latter converges by the p-Series Test since it is a p-series with p = 2.

Likewise, if L = ∞, then for all sufficiently large integers n, we have that |an+1| > |an|, hence the
sequence an is eventually increasing without bound in absolute value. By the nth Term Divergence

Test, we conclude that the infinite series diverges (because its sequence of terms diverges).

We may assume that L is finite. By definition of the limit L, given any real number ε > 0, there

exists a positive integer m sufficiently large such that for all integers n ≥ m, we have that

−ε <

∣∣∣∣an+1

an

∣∣∣∣− L < ε.

By simplifying this inequality, for all integers n ≥ m, it follows that

L− ε <

∣∣∣∣an+1

an

∣∣∣∣ < L+ ε.

Consider the real numbers r = L+ ε and s = L− ε. We proceed by cases as follows.

(a.) If L < 1, we can ensure that r < 1 by taking ε to be sufficiently small. Observe that

|am+1| < |aM |r,
|am+2| < |am+1|r < |aM |r2,
|am+3| < |am+2|r < |am+1|r2 < |aM |r3,

and in general, it holds that |am+n| < |aM |rn. Consequently, we have that

∞∑
n=m

|an| =
∞∑
k=0

|am+k| =
∞∑
n=0

|am+n| <
∞∑
n=0

|aM |rn = |aM |
∞∑
n=0

rn.

By the Convergence of Geometric Series, the geometric series on the right-hand side converges

by hypothesis that 0 ≤ L < r < 1. By the Direct Comparison Test, the series
∑

|an| converges,
hence the series in question converges absolutely by definition of absolute convergence.
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(b.) If L > 1, we can ensure that s > 1 by taking ε to be sufficiently small. By a similar argument

as above, it follows that |am+n| > |aM |sn. Considering that s > 1, it follows that

lim
n→∞

|an| = lim
n→∞

|am+n| > lim
n→∞

|aM |sn = |aM | lim
n→∞

sn = ∞.

Consequently, the series in question diverges by the nth Term Divergence Test.

Exercise 5.6.2. Use the Ratio Test to determine the convergence of the infinite series
∞∑
n=0

en

n!
.

Solution. By the Ratio Test, it suffices to compute the following limit and make an interpretation.

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

en+1

(n+ 1)!
· n!
en

= lim
n→∞

e

n+ 1
= 0.

Considering that L < 1, by the Ratio Test, we conclude that the series converges absolutely. ⋄

Exercise 5.6.3. Use the Ratio Test to determine the convergence of the infinite series
∞∑
n=1

10n

3n2 .

Exercise 5.6.4. Use the Ratio Test to determine the convergence of the infinite series
∞∑
n=1

23
n

32n
.

Solution. By the Ratio Test, it suffices to compute the following limit and make an interpretation.

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

23
n+1

32n+1 · 3
2n

23n
= lim

n→∞

23
n+1−3n

32n+1−2n
= lim

n→∞

43
n

32n
≥ lim

n→∞

43
n

42n
= lim

n→∞
43

n−2n = ∞.

Considering that L > 1, by the Ratio Test, we conclude that the series diverges. ⋄

Exercise 5.6.5. Use the Ratio Test to determine the convergence of the infinite series
∞∑
n=1

nn

(n2)!
.

One of the great advantages of the Ratio Test is that there are no exclusionary rules or provisions

to check in order to perform the test: indeed, we can completely carry out the analysis of the Ratio

Test from start to finish with the infinite series that is handed to us. Compare this feature with

either the Integral Test or Alternating Series Test in which we are required to verify some properties

of the general term of the series before reaping the benefits. Even more, the Ratio Test requires

no inspiration or divine intervention. Compare this with either of the Comparison Tests in which

we are required to (perhaps miraculously) come up with another sequence to compare with the

sequence at hand (as if the sequence we started with was not already enough to handle).

Unfortunately, as with all things that appear too good to be true, there is a substantial caveat

to using the Ratio Test: namely, the Ratio Test cannot determine the convergence of any series

whose general term converges “too slowly” to zero. For instance, if we consider any rational series

∞∑
n=m

p(n)

q(n)
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for any real polynomial functions p(x) and q(x) such that q(x) is nonzero for any integer n ≥ m,

the Ratio Test is inconclusive since the degree and leading coefficient of p(n + 1) are equal to the

respective degree and leading coefficient of p(n) (and likewise for q), hence we have that

L = lim
n→∞

∣∣∣∣p(n+ 1)

q(n+ 1)
· q(n)
p(n)

∣∣∣∣ = lim
n→∞

∣∣∣∣p(n+ 1)

p(n)
· q(n)

q(n+ 1)

∣∣∣∣ = (
lim
n→∞

p(n+ 1)

p(n)

)(
lim
n→∞

q(n)

q(n+ 1)

)
= 1.

Likewise, the Ratio Test fails to detect the divergence of the infinite series

∞∑
n=2

1

ln(n)

because the positive sequence ln(n) grows “too slowly.” Explicitly, we have that

L = lim
n→∞

∣∣∣∣ ln(n+ 1)

ln(n)

∣∣∣∣ = lim
n→∞

ln(n+ 1)

ln(n)
L’H
= lim

n→∞

n

n+ 1
= 1.

Even in spite of these shortcomings, we will soon see that the Ratio Test is an indispensable tool.

5.7 Power Series

Recall that a nonzero polynomial function of degree n is any function of the form

f(x) = a0 + a1x+ · · ·+ anx
n

for some integer n ≥ 0 and real numbers a0, a1, . . . , an such that an is nonzero. We refer to ai as the

coefficient of the monomial xi for each integer 0 ≤ i ≤ n; the monomials aix
i are the terms of

the polynomial. Using the notion of infinite series, we obtain a generalization of polynomials that

allows us to include terms of arbitrarily large degree. Explicitly, we define the power series

f(x) =
∞∑
n=0

an(x− c)n = a0 + a1(x− c) + a2(x− c)2 + · · ·+ an(x− c)n + · · · .

We refer to the constant c as the center of the power series. Under this identification, a polynomial

function is simply a power series for which the sequence of coefficients an is nonzero for only finitely

many integers n ≥ 0 (i.e., we have that an = 0 for all sufficiently large integers n).

Convergence of a power series depends not only on its coefficients but also its center c.

Example 5.7.1. Consider the power series centered at x = 0 with sequence of coefficients an = n.

f(x) =
∞∑
n=0

an(x− c)n =
∞∑
n=0

nxn

Observe that the value of f(x) is determined by the convergence of the underlying power series.
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Explicitly, in this case, by plugging in x = −1, x = 1
2
, and x = 1, we have that

f(−1) =
∞∑
n=0

(−1)nn,

f

(
1

2

)
=

∞∑
n=0

n

(
1

2

)n
=

∞∑
n=0

n

2n
, and

f(1) =
∞∑
n=0

n.

By the nth Term Divergence Test, it follows that the infinite series corresponding to f(−1) and

f(1) diverge. By the Ratio Test, we find that the infinite series corresponding to f
(
1
2

)
converges.

L = lim
n→∞

n+ 1

2n+1
· 2

n

n
= lim

n→∞

n+ 1

2n
=

1

2

Generally, the convergence of a power series can be determined by the Ratio Test as follows.

Theorem 5.7.2 (Convergence of Power Series). Consider the power series

f(x) =
∞∑
n=0

an(x− c)n

centered at the real number c determined by the infinite sequence of real numbers an. There exists a

(possibly infinite) real number R ≥ 0 called the radius of convergence of f(x) such that

(a.) f(x) converges absolutely for all real numbers x such that c−R < x < c+R and

(b.) f(x) diverges for all real numbers x such that x > c+R or x < c−R.

We refer to the interval I = (c−R, c+R) where f(x) converges as the interval of convergence.

Even more, the radius of convergence and the interval of convergence satisfy the following properties.

(a.) If R = ∞, then f(x) converges absolutely for all real numbers, i.e., I = (−∞,∞).

(b.) If R > 0 is finite, then f(x) may converge or diverge at x = c−R and x = c+R.

(c.) If R = 0, then f(x) diverges for all real numbers x ̸= c and f(x) converges for x = c.

Proof. By the Ratio Test, the convergence of the power series f(x) is determined by the following.

L = lim
n→∞

∣∣∣∣an+1(x− c)n+1

an(x− c)n

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1(x− c)

an

∣∣∣∣ = |x− c| lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
Consider the (possibly infinite) real number R such that the following equality holds.

1

R
= lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣
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Certainly, if the above limit tends to 0, then L tends to 0 and R tends to infinity. Even more, in

this case, we have that L = 0, hence the Ratio Test ensures that f(x) converges absolutely for all

real numbers x. Conversely, if the above limit tends to infinity, then L tends to infinity and R tends

to 0, hence the Ratio Test ensures that f(x) diverges for all real numbers x ̸= c and f(x) converges

for x = c. Last, if the above limit is finite, then the real number R ≥ 0 is finite. By the Ratio Test,

the power series f(x) converges absolutely if and only if L < 1 if and only if

|x− c|
R

< 1

if and only if |x−c| < R if and only if −R < x−c < R if and only if c−R < x < c+R. Put another

way, we have that f(x) converges absolutely for all real numbers x such that c − R < x < c + R

and f(x) diverges for all real numbers x such that x > c+R or x < c−R.

Caution. Be very careful to note that the Convergence of Power Series theorem does not guarantee

anything about the convergence of f(x) when x = c−R or x = c+R in the case that the radius of

convergence R is finite and nonzero; rather, we must explicitly test for convergence at these points.

Exercise 5.7.3. Compute the radius and interval of convergence of the power series
∞∑
n=0

xn

n!
.

Solution. We proceed by the Ratio Test.

L = lim
n→∞

∣∣∣∣ xn+1

(n+ 1)!
· n!
xn

∣∣∣∣
= lim

n→∞

∣∣∣∣xn+1

xn
· n!

(n+ 1)!

∣∣∣∣ (Group like terms.)

= |x| lim
n→∞

n!

(n+ 1)!
(Cancel, and pull out constants.)

= |x| lim
n→∞

n!

(n+ 1)n!
(Express n! as a factor of (n+ 1)!.)

= |x| lim
n→∞

1

n+ 1
(Cancel common factors.)

= 0.

We conclude that regardless of x, the power series in question converges absolutely. Consequently,

the radius of convergence is R = ∞, and the interval of convergence is I = (−∞,∞). ⋄

Exercise 5.7.4. Compute the radius and interval of convergence of the power series
∞∑
n=0

(−1)nx2n+1

2nn
.
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Solution. We proceed by the Ratio Test.

L = lim
n→∞

∣∣∣∣ x2n+3

2n+1(n+ 1)
· 2nn

x2n+1

∣∣∣∣ = lim
n→∞

∣∣∣∣x2(n+ 1)

2n

∣∣∣∣ = x2

2
lim
n→∞

n+ 1

n
=

x2

2

By the Ratio Test, the series converges if L < 1 if and only if x2 < 2 if and only if −
√
2 < x <

√
2.

Even more, the series diverges if L > 1 if and only if x2 > 2 if and only if x >
√
2 or x < −

√
2.

Consequently, it suffices to determine convergence at x = ±
√
2. Observe that if x =

√
2, then

x2n+1

2n
=

√
2
2n+1

√
2
2n =

√
2 so that

(−1)nx2n+1

2nn
=

√
2

n
.

Considering that this sequence is positive, decreasing, and converges to 0, by the Alternating Series

Test, we conclude that the power series converges at x =
√
2. Likewise, if x = −

√
2, then

(−1)nx2n+1 = (−1)n(−
√
2)2n+1 = (−1)n(−1)2n+1

√
2
2n+1

= (−1)3n+1
√
2
2n+1

= (−1)n+1
√
2
2n+1

is alternating. By the above rationale, the series converges at x = −
√
2.We conclude that the radius

of convergence of the power series is R = 2
√
2, and the interval of convergence is [−

√
2,
√
2]. ⋄

Exercise 5.7.5. Compute the radius and interval of convergence of the power series
∞∑
n=0

nnxn.

Solution. We proceed by the Ratio Test.

L = lim
n→∞

∣∣∣∣(n+ 1)n+1xn+1

nnxn

∣∣∣∣ = |x| lim
n→∞

(n+ 1)(n+ 1)n

nn
= |x| lim

n→∞
(n+ 1)

(
n+ 1

n

)n
Consequently, it suffices to compute the limit of the terms involving n. We note first that if

y =

(
1 +

1

x

)x
, then

ln(y) = x ln

(
1 +

1

x

)
implies that

1

y

dy

dx
=

x

1 + 1
x

(
− 1

x2

)
+ ln

(
1 +

1

x

)
= − 1

x+ 1
+ ln

(
1 +

1

x

)
and

dy

dx
=

(
1 +

1

x

)x[
− 1

x+ 1
+ ln

(
1 +

1

x

)]
> 0 for all real numbers x ≥ 1.

Crucially, it follows that the sequence of n in the above limit is increasing and unbounded because

it is a product of increasing sequences neither of which converges to 0. Consequently, we have that

L = ∞. By the Ratio Test, we conclude that the power series diverges for all real numbers x ̸= 0. ⋄

Exercise 5.7.6. Compute the radius and interval of convergence of the power series
∞∑
n=0

(3− x)n

3n
.
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Solution. By grouping the terms of the power series with exponent n together under the same

exponent, we can view this power series as a geometric series with common ratio

r =
x− 3

−3
.

By the Convergence of Geometric Series, we conclude that the power series converges if and only

if −1 < r < 1 if and only if −3 < x − 3 < 3 if and only if 0 < x < 6. Consequently, the radius of

convergence of the power series is R = 3, and the interval of convergence is I = (0, 6). ⋄

Example 5.7.7. Given any nonzero real number c and any real function g(x), consider the series

f(x) =
∞∑
n=0

c[g(x)]n.

By the Ratio Test, we have that f(x) converges absolutely if and only if

|g(x)| = lim
n→∞

|g(x)| = lim
n→∞

∣∣∣∣ [g(x)]n+1

[g(x)]n

∣∣∣∣ = lim
n→∞

∣∣∣∣c[g(x)]n+1

c[g(x)]n

∣∣∣∣ < 1.

Even more, by the Convergence of Geometric Series formula, if |g(x)| < 1, then

f(x) =
∞∑
n=0

c[g(x)]n =
c

1− g(x)
.

Consequently, we obtain a closed form of f(x) in terms of g(x) for all real numbers x with |g(x)| < 1.

Exercise 5.7.8. Use Example 5.7.7 to express each of the following functions as a power series;

then, state the radius and interval of convergence for each power series.

(a.)
1

1− x
(b.)

1

1 + x
(c.)

1

1 + x2

Solution. (a.) Observe that for the real function g(x) = x, we obtain the power series representation

1

1− x
=

∞∑
n=0

xn

that is valid for all real numbers x such that |x| < 1. We conclude that the radius of convergence

of the power series is R = 1, and the interval of convergence is I = (−1, 1).

(c.) Observe that for the real function g(x) = −x2, we obtain the power series representation

1

1 + x2
=

1

1− (−x2)
=

∞∑
n=0

(−x2)n =
∞∑
n=0

(−1)nx2n

that is valid for all real numbers x such that 0 ≤ x2 < 1. Considering that 0 ≤ x2 < 1 if and only if

−1 < x < 1, the radius of convergence is R = 1, and the interval of convergence is I = (−1, 1). ⋄

One of the most useful features of power series is that we may differentiate them term-by-term.
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Theorem 5.7.9 (Power Series Are Differentiable). Consider the following power series centered at

a real number c with (possibly infinite) radius of convergence R > 0.

f(x) =
∞∑
n=0

an(x− c)n

(a.) We have that f(x) is differentiable on the interval I = (c−R, c+R) with derivative

f ′(x) =
d

dx
f(x) =

d

dx

∞∑
n=0

an(x− c)n =
∞∑
n=0

an
d

dx
(x− c)n =

∞∑
n=1

nan(x− c)n−1.

Consequently, f ′(x) is a power series centered at x = c with radius of convergence R.

(b.) We have that the antiderivative of f(x) on the interval I = (c−R, c+R) is given by

F (x) + C =

∫
f(x) dx =

∫ ∞∑
n=0

an(x− c)n dx =
∞∑
n=0

an

∫
(x− c)n dx =

∞∑
n=0

an
n+ 1

(x− c)n+1.

Consequently,

∫
f(x) dx is a power series centered at x = c with radius of convergence R.

We note that in practice, the constant C can be found by used the fact that F (c) + C = 0.

Exercise 5.7.10. Use Example 5.7.8 to find a power series representation for the following functions;

then, state the radius and interval of convergence for each power series.

(a.)
1

(1− x)2
(b.)

−2x

(1 + x2)2
(c.) ln(1 + x) (d.) arctan(x)

Solution. (a.) By the Power Rule and the Chain Rule for Derivatives, we have that

1

(1− x)2
=

d

dx

1

1− x
=

d

dx

∞∑
n=0

xn =
∞∑
n=0

d

dx
xn =

∞∑
n=0

nxn−1 =
∞∑
n=1

nxn−1

by Theorem 5.7.9; the radius of convergence is R = 1, and the interval of convergence is (−1, 1).

(b.) By the Power Rule and Chain Rule for Derivatives, we have that

−2x

(1 + x2)2
=

d

dx

1

1 + x2
=

d

dx

∞∑
n=0

(−1)nx2n =
∞∑
n=0

(−1)n
d

dx
x2n =

∞∑
n=1

(−1)n2nx2n−1

with radius of convergence R = 1 and interval of convergence (−1, 1).

(c.) Observe that if −1 < x < 1, then 0 < 1 + x < 2 and

ln(1 + x) + C =

∫
1

1 + x
dx =

∫ ∞∑
n=0

(−1)nxn dx =
∞∑
n=0

(−1)n
∫

xn dx =
∞∑
n=0

(−1)nxn+1

n+ 1
.

By plugging in x = 0, we find that C = ln(1) + C = 0, hence we conclude that

ln(1 + x) =
∞∑
n=0

(−1)nxn+1

n+ 1
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with radius of convergence R = 1 and interval of convergence [−1, 1]. Crucially, we achieve conver-

gence at both endpoints x = −1 and x = 1 by the Alternating Series Test.

(d.) Last, we have that

arctan(x) + C =

∫
1

1 + x2
dx =

∫ ∞∑
n=0

(−1)nx2n dx =
∞∑
n=0

(−1)n
∫

x2n dx =
∞∑
n=0

(−1)nx2n+1

2n+ 1
.

By plugging in x = 0, we find that C = arctan(0) + C = 0, hence we conclude that

arctan(x) =
∞∑
n=0

(−1)nx2n+1

2n+ 1

with radius R = 1 and interval of convergence [−1, 1] by the Alternating Series Test. ⋄

One immediate consequence of the previous example is that we are now able to approximate

(via power series) the value of previously unknown quantities. By Example 5.7.10(c.), we have that

π

4
= arctan(1) =

∞∑
n=0

(−1)n

2n+ 1
= 1− 1

3
+

1

5
− 1

7
+

1

9
− · · · .

Consequently, we can approximate π to any desired degree of accuracy, i.e., we can write the decimal

expansion of π in a manner that is accurate to as many decimal places as desired! (We remark that

the convergence of the arctangent series is very slow since it is asymptotically equivalent to the

alternating harmonic series; indeed, there are better series approximations of π that are preferred

in practice. Even still, this approximation of π is historically significant and quite remarkable.)

5.8 Taylor Series

Consider any real function f(x) and any real number c such that the nth derivative f (n)(x) of f(x)

exists at x = c for all integers n ≥ 0. We refer to the power series

f(x) =
∞∑
n=0

f (n)(c)

n!
(x− c)n

as the Taylor series of f(x) centered at x = c. Crucially, if a real function f(x) is represented by

a power series centered at x = c on some open interval of the form (c − R, c + R) for some real

number R > 0, then that power series must be the Taylor series of f(x) centered at x = c.

Theorem 5.8.1 (Uniqueness of Taylor Series). Given any real function f(x) for which the Taylor

series of f(x) centered at x = c exists, there exists a real number R > 0 such that the Taylor series

of f(x) centered at x = c is the unique power series expansion of f(x) on the interval (c−R, c+R).

Caution. Be very careful not to misinterpret the theorem. Explicitly, this does not guarantee that

a real function f(x) admits a power series expansion; rather, it says that if f(x) can be represented

as a power series center at x = c, then that power series must in fact be the Taylor series of f(x).
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We have in Examples 5.7.7, 5.7.8, and 5.7.10 provided power series expansions of the logarithmic

function ln(1 + x), the inverse trigonometric function arctan(x), and the rational functions

1

1− x
and

1

1 + x2
.

Consequently, by Theorem 5.8.1, these are in fact the Taylor series expansions of these functions

centered at x = 0! Generally, if it exists, the Taylor series expansion of a real function f(x) centered

at x = 0 is referred to as the Maclaurin series of f(x); the terminology is no doubt perplexing,

but it is commonplace and remains in use due to historical considerations.

Exercise 5.8.2. Compute the Maclaurin series of f(x) = ex.

Solution. We compute the nth derivative of ex for each integer n ≥ 0. Considering that f(x) = ex

satisfies that f ′(x) = ex, we find that f (n)(x) = ex for all integers n ≥ 0. Consequently, we have

that f (n)(0) = 1 for all integers n ≥ 0. By the formula for the Maclaurin series, we conclude that

ex =
∞∑
n=0

1

n!
xn =

∞∑
n=0

xn

n!
.

Even more, by the Ratio Test, the series converges absolutely for all real numbers since

L = lim
n→∞

∣∣∣∣ xn+1

(n+ 1)!
· n!
xn

∣∣∣∣ = lim
n→∞

∣∣∣∣ xn!

(n+ 1)n!

∣∣∣∣ = |x| lim
n→∞

1

n+ 1
= 0. ⋄

Exercise 5.8.3. Compute the Maclaurin series of f(x) = cos(x).

Solution. We compute the nth derivative of cos(x) for each integer n ≥ 0. Observe that

f(x) = cos(x), f ′′(x) = − cos(x), and

f ′(x) = − sin(x), f ′′′(x) = sin(x).

Considering that cos(x) is the derivative of sin(x), the derivatives of cos(x) are periodic with

f (4k)(x) = cos(x), f (4k+2)(x) = − cos(x), and

f (4k+1)(x) = − sin(x), f (4k+3)(x) = sin(x)

for all integers k ≥ 0. Consequently, for each integer k ≥ 1, we have that

f (4k)(0) = 1, f (4k+2)(0) = −1, and

f (4k+1)(0) = 0, f (4k+3)(0) = 0.

Put another way, the even derivatives of f(x) = cos(x) are alternating in sign and the odd derivatives

of f(x) = cos(x) are zero for c = 0. By the formula for the Maclaurin series, we conclude that

cos(x) =
∞∑
n=0

f (n)(0)

n!
xn =

∞∑
n=0

(−1)n

(2n)!
x2n =

∞∑
n=0

(−1)nx2n

(2n)!
.

Even more, by the Ratio Test, the series converges absolutely for all real numbers since

L = lim
n→∞

∣∣∣∣ x2n+2

(2n+ 2)!
· (2n)!
x2n

∣∣∣∣ = lim
n→∞

∣∣∣∣ x2(2n)!

(2n+ 2)(2n+ 1)(2n)!

∣∣∣∣ = x2 lim
n→∞

1

4n2 + 6n+ 2
= 0. ⋄
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Exercise 5.8.4. Compute the Maclaurin series of f(x) = sin(x).

Solution. We compute the nth derivative of sin(x) for each integer n ≥ 0. Observe that

f(x) = sin(x), f ′′(x) = − sin(x), and

f ′(x) = cos(x), f ′′′(x) = − cos(x).

Considering that sin(x) is the derivative of − cos(x), the derivatives of sin(x) are periodic with

f (4k)(x) = sin(x), f (4k+2)(x) = −− sin(x), and

f (4k+1)(x) = cos(x), f (4k+3)(x) = − cos(x)

for all integers k ≥ 0. Consequently, for each integer k ≥ 1, we have that

f (4k)(0) = 0, f (4k+2)(0) = 0, and

f (4k+1)(0) = 1, f (4k+3)(0) = −1.

Put another way, the odd derivatives of f(x) = sin(x) are alternating in sign and the even derivatives

of f(x) = sin(x) are zero for c = 0. By the formula for the Maclaurin series, we conclude that

sin(x) =
∞∑
n=0

f (n)(0)

n!
xn =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
.

Even more, by the Ratio Test, the series converges absolutely for all real numbers since

L = lim
n→∞

∣∣∣∣ x2n+3

(2n+ 3)!
· (2n+ 1)!

x2n+1

∣∣∣∣ = lim
n→∞

∣∣∣∣ x2(2n+ 1)!

(2n+ 3)(2n+ 2)(2n+ 1)!

∣∣∣∣ = x2 lim
n→∞

1

4n2 + 10n+ 6
= 0. ⋄

Theorem 5.8.5 (Convergence of Taylor Series). Consider any real numbers c and R > 0 and any

real function f(x) such that f (n)(x) is continuously differentiable for all integers n ≥ 0 and all real

numbers x such that c − R < x < c + R. Provided that there exists a real number K such that

|f (n)(x)| ≤ K for all integers n ≥ 0 and all real numbers x such that c−R < x < c+R, the Taylor

series of f(x) centered at x = c converges to f(x), i.e., the following representation of f(x) is valid.

f(x) =
∞∑
n=0

f (n)(x)

n!
(x− c)n

Once we know the Taylor series expansion of some real function f(x) centered at x = c, it is not

overtly difficult to find the Taylor series expansion of the real functions xkf(x) or f(x)/xk for some

any integer k ≥ 1 or the Taylor series expansion of (g ◦ f)(x) for some real function g(x); however,

it is possible to change the center of a Taylor series when performing these operations.

Exercise 5.8.6. Compute the Taylor series expansion of each of the following.

(a.) x3 cos(x) (b.) e1−x2
(c.) ex−4

(d.)
x− sin(x)

x
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Solution. (a.) By Example 5.8.3, the Maclaurin series for cos(x) is given by

cos(x) =
∞∑
n=0

(−1)nx2n

(2n)!
.

By multiplying this power series by x3, we obtain the Maclaurin series expansion

x3 cos(x) =
∞∑
n=0

(−1)nx2n+3

(2n)!
.

By the Ratio Test, this series converges for all real numbers.

(b.) By Example 5.8.2, the Maclaurin series for ex is given by

ex =
∞∑
n=0

xn

n!
.

Considering that e1−x2
= ee−x2

, plugging in −x2 to the above yields the Maclaurin series

e1−x2

= ee−x2

= e
∞∑
n=0

(−x2)n

n!
=

∞∑
n=0

e(−1)nx2n

n!
.

By the Ratio Test, this series converges for all real numbers.

(c.) Likewise, by plugging in x− 4 to the Maclaurin series of ex, we obtain the Taylor series

ex−4 =
∞∑
n=0

(x− 4)n

n!

of ex centered at x = 4. By the Ratio Test, this series converges for all real numbers.

(d.) By Example 5.8.4, the Maclaurin series for sin(x) is given as follows.

sin(x) =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

By multiplying this expansion by −1 and adding x, we obtain the following.

x− sin(x) = x−
(
x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

)
=

x3

3!
− x5

5!
+

x7

7!
− x9

9!
+ · · ·

Last, by dividing each side of this identity by x, we conclude that

x− sin(x)

x
=

x2

3!
− x4

5!
+

x6

7!
− x8

9!
+ · · · =

∞∑
n=1

(−1)n+1x2n

(2n+ 1)!
.

By the Ratio Test, this Maclaurin series converges for all real numbers. ⋄

One of the most ingenious uses of power series is to compute limits and to find power series

representations for the antiderivatives of certain functions that lack elementary antiderivatives.
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Exercise 5.8.7. Verify that L’Hôpital’s Rule can be used to compute the limit

lim
x→0

x− sinx

x3 cosx
;

then, explain the difficulty in doing so. Ultimately, compute the limit using power series.

Exercise 5.8.8. Verify that L’Hôpital’s Rule can be used to compute the limit

lim
x→0

cos(
√
x)− 1

2x
;

then, explain the difficulty in doing so. Ultimately, compute the limit using power series.

5.9 Taylor Polynomials and Approximation

Given any real function f(x) that is differentiable on an open interval (a, b) and any real number c

such that a < c < b, recall that the first-order (or linear) approximation of f(x) is given by

f(x) ≈ f(c) + f ′(c)(x− c)

for any real number x such that the distance |x − c| between x and c is sufficiently small: indeed,

by the limit definition of the derivative f ′(x) evaluated at the real number x = c, we have that

f ′(c) = lim
x→c

f(x)− f(c)

x− c
so that f ′(c) ≈ f(x)− f(c)

x− c

when x is sufficiently close to c. We refer to the linear polynomial T1(x) = f(c)+ f ′(c)(x− c) as the

linearization of f(x) at x = c. Considering that T1(c) = f(c) and T ′
1(c) = f ′(c), it follows that T1(x)

agrees with f(x) and T ′
1(x) agrees with f ′(x) on a sufficiently small open interval containing x = c,

so in practice, we can replace f(x) with a linear polynomial for all real numbers x sufficiently close

to x = c. Power series provide an even more powerful technique for approximation of differentiable

real functions as polynomials. Explicitly, consider the following power series.

f(x) =
∞∑
n=0

an(x− c)n = a0 + a1(x− c) + a2(x− c)2 + a3(x− c)3 + · · ·

By Theorem 5.7.9, we may differentiate f(x) term-by-term to obtain the following.

f(c) = a0 f ′′(c) = 2a2

f ′(c) = a1 f ′′′(c) = 3 · 2a3

Continuing in this manner and identifying the pattern yields f (n)(c) = n! an. Consequently, we

obtain an nth-order approximation of f(x) at x = c by the following real polynomial of degree n.

Tn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 +

f ′′′(c)

3!
(x− c)3 + · · ·+ f (n)(c)

n!
(x− c)n
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We refer to the real polynomial Tn(x) of degree n as the nth Taylor polynomial of f(x) centered

at x = c. Crucially, we observe that the nth Taylor polynomial of f(x) centered at x = c satisfies

Tn(x) =
n∑

k=0

f (k)(c)

k!
(x− c)k =

f (n)(c)

n!
(x− c)n +

n−1∑
k=0

f (k)(c)

k!
(x− c)k =

f (n)(c)

n!
(x− c)n + Tn−1(x).

Consequently, the difference between consecutive Taylor polynomials satisfies that

Tn(x)− Tn−1(x) =
f (n)(c)

n!
(x− c)n.

We will soon discover that this observation is absolutely indispensable to the development of the

theory of Taylor series; however, before that, we point out the following fundamental fact.

Theorem 5.9.1 (Uniqueness of Taylor Polynomials). Given any integer n ≥ 0 and any real function

f(x) such that f (n)(x) is continuous at x = c, the Taylor polynomial Tn(x) of f(x) centered at x = c

is the unique polynomial of degree (at most) n that approximates f(x) to order n at x = c.

We are already familiar with the Taylor series of several common functions; thus, these power

series expansions will make short work of determining the Taylor polynomials of such functions.

Example 5.9.2. By Example 5.8.2, the Taylor series of f(x) = ex centered at x = 0 is given by

ex =
∞∑
n=0

xn

n!
.

Consequently, for any integer n ≥ 0, the nth Taylor polynomial of ex is given by

Tn(x) =
n∑

k=0

xk

k!
.

Explicitly, we have that T3(x) = 1 + x+
x2

2
+

x3

6
.

Example 5.9.3. By Example 5.8.3, the Taylor series of f(x) = cos(x) centered at x = 0 is

cos(x) =
∞∑
n=0

(−1)nx2n

(2n)!
.

Consequently, for any integer n ≥ 0, the nth Taylor polynomial of cos(x) is

Tn(x) =
n∑

k=0

(−1)kx2k

(2k)!
.

Explicitly, we have that T2(x) = 1− x2

2
+

x4

24
.

Example 5.9.4. By Example 5.8.4, the Taylor series of f(x) = sin(x) centered at x = 0 is

sin(x) =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
.
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Consequently, for any integer n ≥ 0, the nth Taylor polynomial of sin(x) is

Tn(x) =
n∑

k=0

(−1)kx2k+1

(2k + 1)!
.

Explicitly, we have that T2(x) = x− x3

6
+

x5

120
.

Of course, we have said all along that our aim has been to use power series to approximate, and

as with any approximation, there is some amount of error involved.

Theorem 5.9.5 (Error Bound Theorem). Consider any real function f(x) such that f (n+1)(x) is

continuous near x = c. Let Tn(x) denote the nth Taylor polynomial of f(x) centered at x = c.

Provided that there exists a real number K such that |f (n+1)(a)| ≤ K for all real numbers a between

c and x, the error in approximating f(x) by Tn(x) for all real numbers near x = c is bounded and

|f(x)− Tn(x)| ≤
K|x− c|n+1

(n+ 1)!
.

Exercise 5.9.6. Use the Error Bound Theorem to find the maximum error in approximating e2

with f(x) = ex and its fourth Taylor polynomial T4(x) centered at x = 0.

Exercise 5.9.7. Use the Error Bound Theorem to approximate cos(1) to three decimal places.

Consider any real function f(x) such that f (n)(x) is continuous for all integers n ≥ 0 and all

real numbers x in some open interval I. Let K be any real number such that |f (n)(x)| ≤ K for all

integers n ≥ 0 and all real numbers x in I. By Proposition 5.1.22 and the Error Bound Theorem,

lim
n→∞

|f(x)− Tn(x)| ≤ lim
n→∞

K|x− c|n+1

(n+ 1)!
= 0.

Consequently, as its degree n grows arbitrarily large, the nth Taylor polynomial centered at x = c

provides an increasingly better approximation of f(x) near x = c since the error in approximating

f(x) via Tn(x) near x = c converges to 0. Even more, the Taylor series of f(x) satisfies that

lim
n→∞

Tn(x) = lim
n→∞

n∑
k=0

f (k)(c)

k!
(x− c)k =

∞∑
k=0

f (k)(c)

k!
(x− c)k = f(x).

Exercise 5.9.8. Explain the difficulty in trying to find the antiderivative of sin(x2); then, compute

the power series expansion of the antiderivative sin(x2), and state its radius of convergence.

Exercise 5.9.9. Explain the difficulty in trying to find the antiderivative of e1−x2
; then, compute

the power series expansion of the antiderivative e1−x2
, and state its radius of convergence.
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